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In this chapter we handle data as though the earth had no dipping reflectors. The earth
model is one of stratified layers with velocity a (generally increasing) function of depth. We
consider reflections from layers, which we process by normal moveout correction (NMO).
The NMO operation is an interesting example of many general principles of linear operators
and numerical analysis. Finally, using NMO, we estimate the earth’s velocity with depth
and we stack some data, getting a picture of an earth with dipping layers. This irony,
that techniques developed for a stratified earth can give reasonable images of non-stratified
reflectors, is one of the “lucky breaks” of seismic processing. We will explore the limitations
of this phenomenon in the chapter on dip-moveout.

First, a few words about informal language. The inverse to velocity arises more fre-
quently in seismology than the velocity itself. This inverse is called the “slowness.” In
common speech, however, the word “velocity” is a catch-all, so what is called a “velocity
analysis” might actually be a plane of slowness versus time.

INTERPOLATION AS A MATRIX

Here we see how general principles of linear operators are exemplified by linear interpolation.
Because the subject matter is so simple and intuitive, it is ideal to exemplify abstract
mathematical concepts that apply to all linear operators.

Let an integer k range along a survey line, and let data values xk be packed into a
vector x. (Each data point xk could also be a seismogram.) Next we resample the data
more densely, say from 4 to 6 points. For illustration, I follow a crude nearest-neighbor
interpolation scheme by sprinkling ones along the diagonal of a rectangular matrix that
is

y = Bx (1)

where 

y1

y2

y3

y4

y5

y6


=



1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1




x1

x2

x3

x4

 (2)

The interpolated data is simply y = (x1, x2, x2, x3, x4, x4). The matrix multiplication (2)
would not be done in practice. Instead there would be a loop running over the space of the
outputs y that picked up values from the input.

Looping over input space

The obvious way to program a deformation is to take each point from the input space and
find where it goes on the output space. Naturally, many points could land in the same place,
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and then only the last would be seen. Alternately, we could first erase the output space,
then add in points, and finally divide by the number of points that ended up in each place.
The biggest aggravation is that some places could end up with no points. This happens
where the transformation stretches. There we need to decide whether to interpolate the
missing points, or simply low-pass filter the output.

Looping over output space

The alternate method that is usually preferable to looping over input space is that our
program have a loop over the space of the outputs, and that each output find its input. The
matrix multiply of (2) can be interpreted this way. Where the transformation shrinks is a
small problem. In that area many points in the input space are ignored, where perhaps they
should somehow be averaged with their neighbors. This is not a serious problem unless we
are contemplating iterative transformations back and forth between the spaces.

We will now address interesting questions about the reversibility of these deformation
transforms.

Formal inversion

We have thought of equation (1) as a formula for finding y from x. Now consider the
opposite problem, finding x from y. Begin by multiplying equation (2) by the transpose
matrix to define a new quantity x̃:


x̃1

x̃2

x̃3

x̃4

 =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





y1

y2

y3

y4

y5

y6


(3)

x̃ is not the same as x, but these two vectors have the same dimensionality and in many
applications it may happen that x̃ is a good approximation to x. In general, x̃ may be
called an “image” of x. Finding the image is the first step of finding x itself. Formally, the
problem is

y = Bx (4)

And the formal solution to the problem is

x = (B′ B)−1 B′ y (5)

Formally, we verify this solution by substituting (4) into (5).

x = (B′ B)−1 (B′ B)x = I x = x (6)

In applications, the possible nonexistence of an inverse for the matrix (B′ B) is always a
topic for discussion. For now we simply examine this matrix for the interpolation problem.
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We see that it is diagonal:

B′ B =


1 0 0 0 0 0
0 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1





1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 1


=


1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 2

 (7)

So, x̃1 = x1; but x̃2 = 2x2. To recover the original data, we need to divide x̃ by the diagonal
matrix B′ B. Thus, matrix inversion is easy here.

Equation (5) has an illustrious reputation, which arises in the context of “least squares.”
Least squares is a general method for solving sets of equations that have more equations
than unknowns.

Recovering x from y using equation (5) presumes the existence of the inverse of B′ B. As
you might expect, this matrix is nonsingular when B stretches the data, because then a few
data values are distributed among a greater number of locations. Where the transformation
squeezes the data, B′ B must become singular, since returning uniquely to the uncompressed
condition is impossible.

We can now understand why an adjoint operator is often an approximate inverse. This
equivalency happens in proportion to the nearness of the matrix B′ B to an identity matrix.
The interpolation example we have just examined is one in which B′ B differs from an
identity matrix merely by a scaling.

THE NORMAL MOVEOUT MAPPING

Recall the traveltime equation (??).

v2 t2 = z2 + x2 (8)

t2 = τ2 +
x2

v2
(9)

where τ is traveltime depth. This equation gives either time from a surface source to a
receiver at depth τ , or it gives time to a surface receiver from an image source at depth τ .

A seismic trace is a signal d(t) recorded at some constant x. We can convert the trace
to a “vertical propagation” signal m(τ) = d(t) by stretching t to τ . This process is called
“normal moveout correction” (NMO). Typically we have many traces at different x dis-
tances each of which theoretically produces the same hypothetical zero-offset trace. Figure 1
shows a marine shot profile before and after NMO correction at the water velocity. You can
notice that the wave packet reflected from the ocean bottom is approximately a constant
width on the raw data. After NMO, however, this waveform broadens considerably—a
phenomenon known as “NMO stretch.”

The NMO transformation N is representable as a square matrix. The matrix N is a (τ, t)-
plane containing all zeros except an interpolation operator centered along the hyperbola.
The dots in the matrix below are zeros. The input signal dt is put into the vector d. The
output vector m—i.e., the NMO’ed signal—is simply (d6, d6, d6, d7, d7, d8, d8, d9, d10, 0). In
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Figure 1: Marine data moved out
with water velocity. Input on the
left, output on the right.

real life examples such as Figure 1 the subscript goes up to about one thousand instead of
merely to ten.

m = Nd =



m1

m2

m3

m4

m5

m6

m7

m8

m9

m10


=



. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . 1 . . . .

. . . . . . 1 . . .

. . . . . . 1 . . .

. . . . . . . 1 . .

. . . . . . . 1 . .

. . . . . . . . 1 .

. . . . . . . . . 1

. . . . . . . . . .





d1

d2

d3

d4

d5

d6

d7

d8

d9

d10


(10)

You can think of the matrix as having a horizontal t-axis and a vertical τ -axis. The 1’s
in the matrix are arranged on the hyperbola t2 = τ2 +x2

0/v2. The transpose matrix defining
some d̃ from m gives synthetic data d̃ from the zero-offset (or stack) model m, namely,

d̃ = N′m =



d̃1

d̃2

d̃3

d̃4

d̃5

d̃6

d̃7

d̃8

d̃9

d̃10



=



. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
1 1 1 . . . . . . .
. . . 1 1 . . . . .
. . . . . 1 1 . . .
. . . . . . . 1 . .
. . . . . . . . 1 .





m1

m2

m3

m4

m5

m6

m7

m8

m9

m10


(11)

A program for nearest-neighbor normal moveout as defined by equations (10) and
(11) is nmo0(). Because of the limited alphabet of programming languages, I used the
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user/gee/nmo0.c

52 for ( i z =0; i z < n ; i z++) {
53 z = t0 + dt∗ i z ; /∗ Travel−t ime depth ∗/
54 xs= x ∗ s low [ i z ] ;
55 t = hypotf ( z , xs ) ; /∗ Hypotenuse ∗/
56 i t = 0 .5 + ( t − t0 ) / dt ; /∗ Round to neares t ne ighbor . ∗/
57 i f ( i t < n ) {
58 i f ( adj ) zz [ i z ] += t t [ i t ] ;
59 else t t [ i t ] += zz [ i z ] ;
60 }
61 }

keystroke z to denote τ .A program is a “pull” program if the loop creating the output
covers each location in the output and gathers the input from wherever it may be. A
program is a “push” program if it takes each input and pushes it to wherever it belongs.
Thus this NMO program is a “pull” program for doing the model building (data processing),
and it is a “push” program for the data building. You could write a program that worked
the other way around, namely, a loop over t with z found by calculation z =

√
t2/v2 − x2.

What is annoying is that if you want a push program going both ways, those two ways
cannot be adjoint to one another.

Normal moveout is a linear operation. This means that data can be decomposed into any
two parts, early and late, high frequency and low, smooth and rough, steep and shallow dip,
etc.; and whether the two parts are NMO’ed either separately or together, the result is the
same. The reason normal moveout is a linear operation is that we have shown it is effectively
a matrix multiply operation and that operation fulfills N(d1 + d2) = Nd1 + Nd2.

COMMON-MIDPOINT STACKING

Typically, many receivers record every shot, and there are many shots over the reflectors of
interest. It is common practice to define the midpoint y = (xs + xg)/2 and then to sort the
seismic traces into “common-midpoint gathers”. After sorting, each trace on a common-
midpoint gather can be transformed by NMO into an equivalent zero-offset trace and the
traces in the gather can all be added together. This is often called “common-depth-point
(CDP) stacking” or, more correctly, “common-midpoint stacking”.

The adjoint to this operation is to begin from a model that is identical to the zero-offset
trace and spray this trace to all offsets. There is no “official” definition of which operator
of an operator pair is the operator itself and which is the adjoint. On the one hand, I like
to think of the modeling operation itself as the operator. On the other hand, the industry
machinery keeps churning away at many processes that have well-known names, so people
often think of one of them as the operator. Industrial data-processing operators are typically
adjoints to modeling operators.

Figure 2 illustrates the operator pair, consisting of spraying out a zero-offset trace (the
model) to all offsets and the adjoint of the spraying, which is stacking. The moveout and
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stack operations are in subroutine stack0(). Let S′ denote NMO, and let the stack be

user/gee/stack0.c

53 for ( i x =0; ix < nx ; i x++) {
54 nmo0 set ( x0 + dx ∗ i x ) ; /∗ s e t o f f s e t ∗/
55 nmo0 lop ( adj , true , nt , nt , stack , gather+ix ∗nt ) ;
56 }

defined by invoking stack0() with the adj=1 argument. Then S is the modeling operation
defined by invoking stack0() with the adj=0 argument. Figure 2 illustrates both. No-

Figure 2: Top is a model trace m.
Center shows the spraying to syn-
thetic traces, S′m. Bottom is the
stack of the synthetic data, SS′m.

tice the roughness on the waveforms caused by different numbers of points landing in one
place. Notice also the increase of AVO (amplitude versus offset) as the waveform gets
compressed into a smaller space. Finally, notice that the stack is a little rough, but the
energy is all in the desired time window.

We notice a contradiction of aspirations. On the one hand, an operator has smooth
outputs if it “loops over output space” and finds its input where ever it may. On the
other hand, it is nice to have modeling and processing be exact adjoints of each other.
Unfortunately, we cannot have both. If you loop over the output space of an operator, then
the adjoint operator has a loop over input space and a consequent roughness of its output.

Crossing traveltime curves

Since velocity increases with depth, at wide enough offset a deep enough path will arrive
sooner than a shallow path. In other words, traveltime curves for shallow events must cut
across the curves of deeper events. Where traveltime curves cross, NMO is no longer a one-
to-one transformation. To see what happens to the stacking process I prepared Figures 3-??
using a typical marine recording geometry (although for clarity I used larger (∆t, ∆x)) and
we will use a typical Texas gulf coast average velocity, v(z) = 1.5 + αz where α = .5.

First we repeat the calculation of Figure 2 with constant velocity α = 0 and more
reflectors. We see in Figure 3 that the stack reconstructs the model except for two details:
(1) the amplitude diminishes with time, and (2) the early waveforms have become rounded.



7

Figure 3: Synthetic CMP gather
for constant velocity earth and re-
construction.

Then we repeat the calculation with the Gulf coast typical velocity gradient α = 1/2.
The polarity reversal on the first arrival of the wide offset trace in Figure ?? is evidence
that in practice traveltime curves do cross. (As was plainly evident in Figures ??, ?? and
?? crossing traveltime curves are even more significant elsewhere in the world.) Comparing
Figure 3 to Figure 4 we see that an effect of the velocity gradient is to degrade the stack’s
reconstruction of the model. Velocity gradient has ruined the waveform on the shallowest
event, at about 400ms. If the plot were made on a finer mesh with higher frequencies, we
could expect ruined waveforms a little deeper too.

Figure 4: Synthetic CMP gather
for velocity linearly increasing with
depth (typical of Gulf of Mexico) and
reconstruction.

Ideal weighting functions for stacking

The difference between stacking as defined by nmo0() on page 5 and by nmo1() on page ??
is in the weighting function (τ/t)(1/

√
t). This weight made a big difference in the resolution

of the stacks but I cannot explain whether this weighting function is the best possible one, or
what systematic procedure leads to the best weighting function in general. To understand
this better, notice that (τ/t)(1/

√
t) can be factored into two weights, τ and t−3/2. One

weight could be applied before NMO and the other after. That would also be more efficient
than weighting inside NMO, as does nmo1(). Additionally, it is likely that these weighting
functions should take into account data truncation at the cable’s end. Stacking is the
most important operator in seismology. Perhaps some objective measure of quality can be
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defined and arbitrary powers of t, x, and τ can be adjusted until the optimum stack is
defined. Likewise, we should consider weighting functions in the spectral domain. As the
weights τ and t−3/2 tend to cancel one another, perhaps we should filter with opposing
filters before and after NMO and stack.

Gulf of Mexico stack and AGC

Next we create a “CDP stack” of our the Gulf of Mexico data set. Recall the moved out
common-midpoint (CMP) gather Figure ??. At each midpoint there is one of these CMP
gathers. Each gather is summed over its offset axis. Figure 5 shows the result of stacking
over offset, at each midpoint. The result is an image of a cross section of the earth.

Figure 5: Stack done with a given velocity profile for all midpoints.

In Figure 5 the early signals are too weak to see. This results from the small number
of traces at early times because of the mute function. (Notice missing information at wide
offset and early time on Figure ??.) To make the stack properly, we should divide by the
number of nonzero traces. The fact that the mute function is tapered rather than cut off
abruptly complicates the decision of what is a nonzero trace. In general we might like to
apply a weighting function of offset. How then should the stack be weighted with time to
preserve something like the proper signal strength? A solution is to make constant synthetic
data (zero frequency). Stacking this synthetic data gives a weight that can be used as a
divisor when stacking field data. I prepared code for such weighted stacking, but it cluttered
the NMO and stack program and required two additional new subroutines, so I chose to
leave the clutter in the electronic book and not to display it here. Instead, I chose to solve
the signal strength problem by an old standby method, Automatic Gain Control (AGC).
A divisor for the data is found by smoothing the absolute values of the data over a moving
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window. To make Figure 6 I made the divisor by smoothing in triangle shaped windows
about a half second long.

Figure 6: Stack of Figure 5 after AGC.

VELOCITY SPECTRA

An important transformation in exploration geophysics takes data as a function of shot-
receiver offset and transforms it to data as a function of apparent velocity. Data is summed
along hyperbolas of many velocities. This important industrial process is adjoint to another
that may be easier to grasp: data is synthesized by a superposition of many hyperbolas.
The hyperbolas have various asymptotes (velocities) and various tops (apexes). Pseudocode
for these transformations is

do v {
do τ {
do x {

t =
√

τ2 + x2/v2

if hyperbola superposition
data(t, x) = data(t, x) + vspace(τ, v)

else if velocity analysis
vspace(τ, v) = vspace(τ, v) + data(t, x)

}}}

This pseudocode transforms one plane to another using the equation t2 = τ2 + x2/v2. This
equation relates four variables, the two coordinates of the data space (t, x) and the two of
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the model space (τ, v). Suppose a model space is all zeros except for an impulse at (τ0, v0).
The code copies this inpulse to data space everywhere where t2 = τ2

0 + x2/v2
0. In other

words, the impulse in velocity space is copied to a hyperbola in data space. In the opposite
case an impulse at a point in data space (t0, x0) is copied to model space everywhere that
satisfies the equation t20 = τ2 + x2

0/v2. Changing from velocity space to slowness space this
equation t20 = τ2 +x2

0s
2 has a name. In (τ, s)-space it is an ellipse (which reduces to a circle

when x2
0 = 1.

Look carefully in the model spaces of Figure 7 and Figure 8. Can you detect any ellipses?
For each ellipse, does it come from a large x0 or a small one? Can you identify the point
(t0, x0) causing the ellipse?

We can ask the question, if we transform data to velocity space, and then return to
data space, will we get the original data? Likewise we could begin from the velocity space,
synthesize some data, and return to velocity space. Would we come back to where we
started? The answer is yes, in some degree. Mathematically, the question amounts to this:
Given the operator A, is A′A approximately an identity operator, i.e. is A nearly a unitary
operator? It happens that A′A defined by the pseudocode above is rather far from an
identity transformation, but we can bring it much closer by including some simple scaling
factors. It would be a lengthy digression here to derive all these weighting factors but let us
briefly see the motivation for them. One weight arises because waves lose amplitude as they
spread out. Another weight arises because some angle-dependent effects should be taken
into account. A third weight arises because in creating a velocity space, the near offsets
are less important than the wide offsets and we do not even need the zero-offset data. A
fourth weight is a frequency dependent one which is explained in chapter ??. Basically, the
summations in the velocity transformation are like integrations, thus they tend to boost low
frequencies. This could be compensated by scaling in the frequency domain with frequency
as
√
−iω. with subroutine halfint() on page ??.

The weighting issue will be examined in more detail later. Meanwhile, we can see
nice quality examples from very simple programs if we include the weights in the physical
domain, w =

√
1/t

√
x/v τ/t. (Typographical note: Do not confuse the weight w (double

you) with omega ω.) To avoid the coding clutter of the frequency domain weighting
√
−iω

I omit that, thus getting smoother results than theoretically preferable. Figure 7 illustrates
this smoothing by starting from points in velocity space, transforming to offset, and then
back and forth again.

There is one final complication relating to weighting. The most symmetrical approach
is to put w into both A and A′. Thus, because of the weighting by

√
x, the synthetic data

in Figure 7 is nonphysical. An alternate view is to define A (by the pseudo code above, or
by some modeling theory) and then for reverse transformation use w2A′.

An example is shown in Figure 8.

Velocity picking

For many kinds of data analysis, we need to know the velocity of the earth as a function
of depth. To derive such information we begin from Figure 8 and draw a line through
the maxima. In practice this is often a tedious manual process, and it needs to be done
everywhere we go. There is no universally accepted way to automate this procedure, but
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Figure 7: Iteration between spaces. Left are model spaces. Right are data spaces. Right
derived from left. Lower model space derived from upper data space.
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Figure 8: Transformation of data as a function of offset (left) to data as a function of
slowness (velocity scans) on the right using subroutine velsimp().

we will consider one that is simple enough that it can be fully described here, and which
works well enough for these demonstrations. (I plan to do a better job later.)

Theoretically we can define the velocity or slowness as a function of traveltime depth
by the moment function. Take the absolute value of the data scans and smooth them a
little on the time axis to make something like an unnormalized probability function, say
p(τ, s) > 0. Then the slowness s(τ) could be defined by the moment function, i.e.,

s(τ) =
∑

s s p(τ, s)∑
s p(τ, s)

(12)

The problem with defining slowness s(τ) by the moment is that it is strongly influenced by
noises away from the peaks, particularly water velocity noises. Thus, better results can be
obtained if the sums in equation (12) are limited to a range about the likely solution. To
begin with, we can take the likely solution to be defined by universal or regional experience.
It is sensible to begin from a one-parameter equation for velocity increasing with depth where
the form of the equation allows a ray tracing solution such as equation (??). Experience
with Gulf of Mexico data shows that α ≈ 1/2 sec−1 is reasonable there for equation (??).

Experience with moments, equation (12), shows they are reasonable when the desired
result is near the guessed center of the range. Otherwise, the moment is biased towards the
initial guess. This bias can be reduced in stages. At each stage we shrink the width of the
zone used to compute the moment.

A more customary way to view velocity space is to square the velocity scans and normal-
ize them by the sum of the squares of the signals. This has the advantage that the remaining
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information represents velocity spectra and removes variation due to seismic amplitudes.
Since in practice, reliability seems somehow proportional to amplitude the disadvantage
of normalization is that reliability becomes more veiled.

Figure 9: Slowness scans. Overlay-
ing is the line of slowness picks.

Stabilizing RMS velocity

With velocity analysis, we estimate the RMS velocity. Later we will need both the RMS
velocity and the interval velocity. (The word “interval” designates an interval between
two reflectors.) Recall from chapter ?? equation (??)

t2 = τ2 +
4h2

V 2(τ)

The forward conversion follows in straightforward steps: square, integrate, square root.
The inverse conversion, like an adjoint, retraces the steps of the forward transform but it
does the inverse at every stage. There is however, a messy problem with nearly all field
data that must be handled along the inverse route. The problem is that the observed
RMS velocity function is generally a rough function, and it is generally unreliable over a
significant portion of its range. To make matters worse, deriving an interval velocity
begins as does a derivative, roughening the function further. We soon find ourselves taking
square roots of negative numbers, which requires judgement to proceed.
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Figure 10: Left is a superposition of RMS velocities, the raw one, and one constrained to
have realistic interval velocities. Right is the nterval velocity.


