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The waves of practical interest in reflection seismology are usually complicated because
the propagation velocities are generally complex. In this book, we have chosen to build up
the complexity of the waves we consider, chapter by chapter. The simplest waves to under-
stand are simple plane waves and spherical waves propagating through a constant-velocity
medium. In seismology however, the earth’s velocity is almost never well approximated by
a constant. A good first approximation is to assume that the earth’s velocity increases with
depth. In this situation, the simple planar and circular wavefronts are modified by the effects
of v(z). In this chapter we study the basic equations describing plane-like and spherical-like
waves propagating in media where the velocity v(z) is a function only of depth. This is
a reasonable starting point, even though it neglects the even more complicated distortions
that occur when there are lateral velocity variations. We will also examine data that shows
plane-like waves and spherical-like waves resulting when waves from a point source bounce
back from a planar reflector.

TRAVEL-TIME DEPTH

Echo soundings give us a picture of the earth. A zero-offest section, for example, is a planar
display of traces where the horizontal axis runs along the earth’s surface and the vertical
axis, running down, seems to measure depth, but actually measures the two-way echo delay
time. Thus, in practice the vertical axis is almost never depth z; it is the vertical travel time
τ . In a constant-velocity earth the time and the depth are related by a simple scale factor,
the speed of sound. This is analogous to the way that astronomers measure distances in
light-years, always referencing the speed of light. The meaning of the scale factor in seismic
imaging is that the (x, τ)-plane has a vertical exaggeration compared to the (x, z)-plane.
In reconnaissance work, the vertical is often exaggerated by about a factor of five. By the
time prospects have been sufficiently narrowed for a drill site to be selected, the vertical
exaggeration factor in use is likely to be about unity (no exaggeration).

In seismic reflection imaging, the waves go down and then up, so the traveltime depth
τ is defined as two-way vertical travel time.

τ =
2 z

v
. (1)

This is the convention that I have chosen to use throughout this book.

Vertical exaggeration

The first task in interpretation of seismic data is to figure out the approximate numerical
value of the vertical exaggeration. The vertical exaggeration is 2/v because it is the
ratio of the apparent slope ∆τ/∆x to the actual slope ∆z/∆x where ∆τ = 2 ∆z/v. Since
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the velocity generally increases with depth, the vertical exaggeration generally decreases
with depth.

For velocity-stratified media, the time-to-depth conversion formula is

τ(z) =
∫ z

0

2 dz

v(z)
or

dτ

dz
=

2
v

(2)

HORIZONTALLY MOVING WAVES

In practice, horizontally going waves are easy to recognize because their travel time is a
linear function of the offset distance between shot and receiver. There are two kinds of
horizontally going waves, one where the traveltime line goes through the origin, and the
other where it does not. When the line goes through the origin, it means the ray path is
always near the earth’s surface where the sound source and the receivers are located. (Such
waves are called “ground roll” on land or “guided waves” at sea; sometimes they are
just called “direct arrivals”.)

When the traveltime line does not pass through the origin it means parts of the ray
path plunge into the earth. This is usually explained by the unlikely looking rays shown
in Figure 1 which frequently occur in practice. Later in this chapter we will see that

Figure 1: Rays associated with
head waves.

Snell’s law predicts these rays in a model of the earth with two layers, where the deeper
layer is faster and the ray bottom is along the interface between the slow medium and the
fast medium. Meanwhile, however, notice that these ray paths imply data with a linear
travel time versus distance corresponding to increasing ray length along the ray bottom.
Where the ray is horizontal in the lower medium, its wavefronts are vertical. These waves
are called “head waves,” perhaps because they are typically fast and arrive ahead of other
waves.

Amplitudes

The nearly vertically-propagating waves (reflections) spread out essentially in three dimen-
sions, whereas the nearly horizontally-going waves never get deep into the earth because,
as we will see, they are deflected back upward by the velocity gradient. Thus horizontal
waves spread out in essentially two dimensions, so that energy conservation suggests that
their amplitudes should dominate the amplitudes of reflections on raw data. This is often
true for ground roll. Head waves, on the other hand, are often much weaker, often being
visible only because they often arrive before more energetic waves. The weakness of head
waves is explained by the small percentage of solid angle occupied by the waves leaving a
source that eventually happen to match up with layer boundaries and propagate as head
waves. I selected the examples below because of the strong headwaves. They are nearly as
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strong as the guided waves. To compensate for diminishing energy with distance, I scaled
data displays by multiplying by the offset distance between the shot and the receiver.

In data display, the slowness (slope of the time-distance curve) is often called the
stepout p. Other commonly-used names for this slope are time dip and reflection
slope. The best way to view waves with linear moveout is after time shifting to re-
move a standard linear moveout such as that of water. An equation for the shifted time
is

τ = t− px (3)

where p is often chosen to be the inverse of the velocity of water, namely, about 1.5 km/s,
or p = .66s/km and x = 2h is the horizontal separation between the sound source and
receiver, usually referred to as the offset.

Ground roll and guided waves are typically slow because materials near the earth’s
surface typically are slow. Slow waves are steeply sloped on a time-versus-offset display.
It is not surprising that marine guided waves typically have speeds comparable to water
waves (near 1.47 km/s approximately 1.5 km/s). It is perhaps surprising that ground roll
also often has the speed of sound in water. Indeed, the depth to underground water is
often determined by seismology before drilling for water. Ground roll also often has a speed
comparable to the speed of sound in air, 0.3 km/sec, though, much to my annoyance I could
not find a good example of it today. Figure 2 is an example of energetic ground roll (land)
that happens to have a speed close to that of water.

Figure 2: Land shot profile (Yilmaz and Cumro) #39 from the Middle East before (left)
and after (right) linear moveout at water velocity.

The speed of a ray traveling along a layer interface is the rock speed in the faster layer
(nearly always the lower layer). It is not an average of the layer above and the layer below.

Figures 3 and 4 are examples of energetic marine guided waves. In Figure 3 at τ = 0
(designated t-t water) at small offset is the wave that travels directly from the shot to
the receivers. This wave dies out rapidly with offset (because it interferes with a wave of
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opposite polarity reflected from the water surface). At near offset slightly later than τ = 0 is
the water bottom reflection. At wide offset, the water bottom reflection is quickly followed
by multiple reflections from the bottom. Critical angle reflection is defined as where the
head wave comes tangent to the reflected wave. Before (above) τ = 0 are the head
waves. There are two obvious slopes, hence two obvious layer interfaces. Figure 4 is much
like Figure 3 but the water bottom is shallower.

Figure 3: Marine shot profile (Yilmaz and Cumro) #20 from the Aleutian Islands.

Figure 5 shows data where the first arriving energy is not along a few straight line
segments, but is along a curve. This means the velocity increases smoothly with depth as
soft sediments compress.

LMO by nearest-neighbor interpolation

To do linear moveout (LMO) correction, we need to time-shift data. Shifting data
requires us to interpolate it. The easiest interpolation method is the nearest-neighbor
method. We begin with a signal given at times t = t0+dt*it where it is an integer. Then
we can use equation (3), namely τ = t − px. Given the location tau of the desired value
we backsolve for an integer, say itau. In C, conversion of a real value to an integer is done
by truncating the fractional part of the real value. To get rounding up as well as down, we
add 0.5 before conversion to an integer, namely itau=0.5+(tau-tau0)/dt. This gives the
nearest neighbor. The way the program works is to identify two points, one in (t, x)-space
and one in (τ, x)-space. Then the data value at one point in one space is carried to the
other. The adjoint operation copies τ space back to t space.

Nearest neighbor rounding is crude but ordinarily very reliable. I discovered a very rare
numerical roundoff problem peculiar to signal time-shifting, a problem which arises in the
linear moveout application when the water velocity, about 1.48 km/sec is approximated by
1.5=3/2. The problem arises only where the amount of the time shift is a numerical value
(like 12.5000001 or 12.499999) and the fractional part should be exactly 1/2 but numerical
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Figure 4: Marine shot profile (Yilmaz and Cumro) #32 from the North Sea.

Figure 5: A common midpoint gather from the Gulf of Mexico before (left) and after (right)
linear moveout at water velocity. Later I hope to estimate velocity with depth in shallow
strata. Press button for movie over midpoint.
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rounding pushes it randomly in either direction. We would not care if an entire signal was
shifted by either 12 units or by 13 units. What is troublesome, however, is if some random
portion of the signal shifts 12 units while the rest of it shifts 13 units. Then the output signal
has places which are empty while adjacent places contain the sum of two values. Linear
moveout is the only application where I have ever encountered this difficulty. The problem
disappears if we use a more accurate sound velocity or if we switch from nearest-neighbor
interpolation to linear interpolation.

Muting

Surface waves are a mathematician’s delight because they exhibit many complex phenom-
ena. Since these waves are often extremely strong, and since the information they contain
about the earth refers only to the shallowest layers, typically, considerable effort is applied
to array design in field recording to suppress these waves. Nevertheless, in many areas of
the earth, these pesky waves may totally dominate the data.

A simple method to suppress ground roll in data processing is to multiply a strip of
data by a near-zero weight (the mute). To reduce truncation artifacts, the mute should
taper smoothly to zero (or some small value). Because of the extreme variability from
place to place on the earth’s surface, there are many different philosophies about designing
mutes. Some mute programs use a data dependent weighting function (such as automatic
gain control). Subroutine mutter() on the following page, however, operates on a simpler
idea: the user supplies trajectories defining the mute zone.

Figure 6 shows an example of use of the routine mutter() on the next page on the
shallow water data shown in Figure 5.

Figure 6: Jim’s first gather before and after muting.
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system/seismic/mutter.c

44 void mutter ( f loat tp /∗ t ime s t ep ∗/ ,
45 f loat s l ope0 /∗ f i r s t s l o p e ∗/ ,
46 f loat s lopep /∗ second s l o p e ∗/ ,
47 f loat x /∗ o f f s e t ∗/ ,
48 f loat ∗data /∗ t r a ce ∗/ )
49 /∗< Mute >∗/
50 {
51 int i t ;
52 f loat wt , t ;
53

54 i f ( abs0 ) x = f a b s f ( x ) ;
55

56 for ( i t =0; i t < nt ; i t++) {
57 t = t0+i t ∗dt ;
58 i f ( hyper ) t ∗= t ;
59 wt = t − x ∗ s l ope0 ;
60 i f ( ( inner && wt > 0 . ) | | ( ! inner && wt < 0 . ) ) {
61 data [ i t ] = 0 . ;
62 } else {
63 wt = t − tp − x ∗ s lopep ;
64 i f ( ( inner && wt >=0.) | | ( ! inner && wt <= 0 . ) ) {
65 wt = s i n f ( 0 . 5 ∗ SF PI ∗
66 ( t−x∗ s l ope0 )/ ( tp+x∗( s lopep−s l ope0 ) ) ) ;
67 data [ i t ] ∗= (wt∗wt ) ;
68 }
69 }
70 }
71 }
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DIPPING WAVES

Above we considered waves going vertically and waves going horizontally. Now let us con-
sider waves propagating at the intermediate angles. For the sake of definiteness, I have
chosen to consider only downgoing waves in this section. We will later use the concepts
developed here to handle both downgoing and upcoming waves.

Rays and fronts

It is natural to begin studies of waves with equations that describe plane waves in a medium
of constant velocity.

Figure 7 depicts a ray moving down into the earth at an angle θ from the vertical.
Perpendicular to the ray is a wavefront. By elementary geometry the angle between the

Figure 7: Downgoing ray and wave-
front.
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wavefront and the earth’s surface is also θ. The ray increases its length at a speed v. The
speed that is observable on the earth’s surface is the intercept of the wavefront with the
earth’s surface. This speed, namely v/ sin θ, is faster than v. Likewise, the speed of the
intercept of the wavefront and the vertical axis is v/ cos θ. A mathematical expression for
a straight line like that shown to be the wavefront in Figure 7 is

z = z0 − x tan θ (4)

In this expression z0 is the intercept between the wavefront and the vertical axis. To
make the intercept move downward, replace it by the appropriate velocity times time:

z =
v t

cos θ
− x tan θ (5)

Solving for time gives
t(x, z) =

z

v
cos θ +

x

v
sin θ (6)

Equation (6) tells the time that the wavefront will pass any particular location (x, z). The
expression for a shifted waveform of arbitrary shape is f(t − t0). Using (6) to define the
time shift t0 gives an expression for a wavefield that is some waveform moving on a ray.

moving wavefield = f

(
t − x

v
sin θ − z

v
cos θ

)
(7)
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Snell waves

In reflection seismic surveys the velocity contrast between shallowest and deepest reflectors
ordinarily exceeds a factor of two. Thus depth variation of velocity is almost always included
in the analysis of field data. Seismological theory needs to consider waves that are just
like plane waves except that they bend to accommodate the velocity stratification v(z).
Figure 8 shows this in an idealized geometry: waves radiated from the horizontal flight of
a supersonic airplane. The airplane passes location x at time t0(x) flying horizontally at a

speed at depth  z
2

speed at depth  z
1

Figure 8: Fast airplane radiating a sound wave into the earth. From the figure you can
deduce that the horizontal speed of the wavefront is the same at depth z1 as it is at depth
z2. This leads (in isotropic media) to Snell’s law.

constant speed. Imagine an earth of horizontal plane layers. In this model there is nothing
to distinguish any point on the x-axis from any other point on the x-axis. But the seismic
velocity varies from layer to layer. There may be reflections, head waves, shear waves,
converted waves, anisotropy, and multiple reflections. Whatever the picture is, it moves
along with the airplane. A picture of the wavefronts near the airplane moves along with the
airplane. The top of the picture and the bottom of the picture both move laterally at the
same speed even if the earth velocity increases with depth. If the top and bottom didn’t
go at the same speed, the picture would become distorted, contradicting the presumed
symmetry of translation. This horizontal speed, or rather its inverse ∂t0/∂x, has several
names. In practical work it is called the stepout. In theoretical work it is called the ray
parameter. It is very important to note that ∂t0/∂x does not change with depth, even
though the seismic velocity does change with depth. In a constant-velocity medium, the
angle of a wave does not change with depth. In a stratified medium, ∂t0/∂x does not change
with depth.
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Figure 9 illustrates the differential geometry of the wave. Notice that triangles have
their hypotenuse on the x-axis and the z-axis but not along the ray. That’s because this
figure refers to wave fronts. (If you were thinking the hypotenuse would measure v∆t, it
could be you were thinking of the tip of a ray and its projection onto the x and z axes.)
The diagram shows that

θ

dx

dz
v dt

earlie
r fr

ont

fr
on

t
ray

Figure 9: Downgoing fronts and rays in stratified medium v(z). The wavefronts are hori-
zontal translations of one another.

∂t0
∂x

=
sin θ

v
(8)

∂t0
∂z

=
cos θ

v
(9)

These two equations define two (inverse) speeds. The first is a horizontal speed, measured
along the earth’s surface, called the horizontal phase velocity. The second is a vertical
speed, measurable in a borehole, called the vertical phase velocity. Notice that both these
speeds exceed the velocity v of wave propagation in the medium. Projection of wave fronts
onto coordinate axes gives speeds larger than v, whereas projection of rays onto coordinate
axes gives speeds smaller than v. The inverse of the phase velocities is called the stepout
or the slowness.

Snell’s law relates the angle of a wave in one layer with the angle in another. The
constancy of equation (8) in depth is really just the statement of Snell’s law. Indeed, we
have just derived Snell’s law. All waves in seismology propagate in a velocity-stratified
medium. So they cannot be called plane waves. But we need a name for waves that are
near to plane waves. A Snell wave will be defined to be the generalization of a plane
wave to a stratified medium v(z). A plane wave that happens to enter a medium of depth-
variable velocity v(z) gets changed into a Snell wave. While a plane wave has an angle of
propagation, a Snell wave has instead a Snell parameter p = ∂t0/∂x.

It is noteworthy that Snell’s parameter p = ∂t0/∂x is directly observable at the surface,
whereas neither v nor θ is directly observable. Since p = ∂t0/∂x is not only observable,
but constant in depth, it is customary to use it to eliminate θ from equations (8) and (9):

∂t0
∂x

=
sin θ

v
= p (10)

∂t0
∂z

=
cos θ

v
=

√
1

v(z)2
− p2 (11)
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Evanescent waves

Suppose the velocity increases to infinity at infinite depth. Then equation (11) tells us that
something strange happens when we reach the depth for which p2 equals 1/v(z)2. That
is the depth at which the ray turns horizontal. We will see in a later chapter that below
this critical depth the seismic wavefield damps exponentially with increasing depth. Such
waves are called evanescent. For a physical example of an evanescent wave, forget the
airplane and think about a moving bicycle. For a bicyclist, the slowness p is so large that
it dominates 1/v(z)2 for all earth materials. The bicyclist does not radiate a wave, but
produces a ground deformation that decreases exponentially into the earth. To radiate a
wave, a source must move faster than the material velocity.

Solution to kinematic equations

The above differential equations will often reoccur in later analysis, so they are very im-
portant. Interestingly, these differential equations have a simple solution. Taking the Snell
wave to go through the origin at time zero, an expression for the arrival time of the Snell
wave at any other location is given by

t0(x, z) =
sin θ

v
x +

∫ z

0

cos θ

v
dz (12)

t0(x, z) = p x +
∫ z

0

√
1

v(z)2
− p2 dz (13)

The validity of equations (12) and (13) is readily checked by computing ∂t0/∂x and ∂t0/∂z,
then comparing with (10) and (11).

An arbitrary waveform f(t) may be carried by the Snell wave. Use (12) and (13) to
define the time t0 for a delayed wave f [t− t0(x, z)] at the location (x, z).

SnellWave(t, x, z) = f

(
t − p x −

∫ z

0

√
1

v(z)2
− p2 dz

)
(14)

Equation (14) carries an arbitrary signal throughout the whole medium. Interestingly, it
does not agree with wave propagation theory or real life because equation (14) does not
correctly account for amplitude changes that result from velocity changes and reflections.
Thus it is said that Equation (14) is “kinematically” correct but “dynamically” incorrect.
It happens that most industrial data processing only requires things to be kinematically
correct, so this expression is a usable one.

CURVED WAVEFRONTS

The simplest waves are expanding circles. An equation for a circle expanding with velocity
v is

v2 t2 = x2 + z2 (15)

Considering t to be a constant, i.e. taking a snapshot, equation (15) is that of a circle. Con-
sidering z to be a constant, it is an equation in the (x, t)-plane for a hyperbola. Considered
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in the (t, x, z)-volume, equation (15) is that of a cone. Slices at various values of t show
circles of various sizes. Slices of various values of z show various hyperbolas.

Converting equation (15) to traveltime depth τ we get

v2 t2 = z2 + x2 (16)

t2 = τ2 +
x2

v2
(17)

The earth’s velocity typically increases by more than a factor of two between the earth’s
surface, and reflectors of interest. Thus we might expect that equation (17) would have
little practical use. Luckily, this simple equation will solve many problems for us if we know
how to interpret the velocity as an average velocity.

Root-mean-square velocity

When a ray travels in a depth-stratified medium, Snell’s parameter p = v−1 sin θ is constant
along the ray. If the ray emerges at the surface, we can measure the distance x that it has
traveled, the time t it took, and its apparent speed dx/dt = 1/p. A well-known estimate v̂
for the earth velocity contains this apparent speed.

v̂ =

√
x

t

dx

dt
(18)

To see where this velocity estimate comes from, first notice that the stratified velocity v(z)
can be parameterized as a function of time and take-off angle of a ray from the surface.

v(z) = v(x, z) = v′(p, t) (19)

The x coordinate of the tip of a ray with Snell parameter p is the horizontal component of
velocity integrated over time.

x(p, t) =
∫ t

0
v′(p, t) sin θ(p, t) dt = p

∫ t

0
v′(p, t)2 dt (20)

Inserting this into equation (18) and canceling p = dt/dx we have

v̂ = vRMS =

√
1
t

∫ t

0
v′(p, t)2 dt (21)

which shows that the observed velocity is the “root-mean-square” velocity.

When velocity varies with depth, the traveltime curve is only roughly a hyperbola. If
we break the event into many short line segments where the i-th segment has a slope pi and
a midpoint (ti, xi) each segment gives a different v̂(pi, ti) and we have the unwelcome chore
of assembling the best model. Instead, we can fit the observational data to the best fitting
hyperbola using a different velocity hyperbola for each apex, in other words, find V (τ) so
this equation will best flatten the data in (τ, x)-space.

t2 = τ2 + x2/V (τ)2 (22)

Differentiate with respect to x at constant τ getting

2t dt/dx = 2x/V (τ)2 (23)

which confirms that the observed velocity v̂ in equation (18), is the same as V (τ) no matter
where you measure v̂ on a hyperbola.
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Layered media

From the assumption that experimental data can be fit to hyperbolas (each with a different
velocity and each with a different apex τ) let us next see how we can fit an earth model
of layers, each with a constant velocity. Consider the horizontal reflector overlain by a
stratified interval velocity v(z) shown in Figure 10.

Figure 10: Raypath diagram for
normal moveout in a stratified earth.

The separation between the source and geophone, also called the offset, is 2h and the
total travel time is t. Travel times are not be precisely hyperbolic, but it is common practice
to find the best fitting hyperbolas, thus finding the function V 2(τ).

t2 = τ2 +
4h2

V 2(τ)
(24)

where τ is the zero-offset two-way traveltime.

An example of using equation (24) to stretch t into τ is shown in Figure 11. (The
programs that find the required V (τ) and do the stretching are coming up in chapter ??.)

Equation (21) shows that V (τ) is the “root-mean-square” or “RMS” velocity defined by
an average of v2 over the layers. Expressing it for a small number of layers we get

V 2(τ) =
1
τ

∑
i

v2
i ∆τi (25)

where the zero-offset traveltime τ is a sum over the layers:

τ =
∑

i

∆τi (26)

The two-way vertical travel time τi in the ith layer is related to the thickness ∆zi and the
velocity vi by

∆τi =
2 ∆zi

vi
. (27)

Next we examine an important practical calculation, getting interval velocities from
measured RMS velocities: Define in layer i, the interval velocity vi and the two-way vertical
travel time ∆τi. Define the RMS velocity of a reflection from the bottom of the i-th layer
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Figure 11: If you are lucky and get a good velocity, when you do NMO, everything turns
out flat. Shown with and without mute.

to be Vi. Equation (25) tells us that for reflections from the bottom of the first, second,
and third layers we have

V 2
1 =

v2
1∆τ1

∆τ1
(28)

V 2
2 =

v2
1∆τ1 + v2

2∆τ2

∆τ1 + ∆τ2
(29)

V 2
3 =

v2
1∆τ1 + v2

2∆τ2 + v2
3∆τ3

∆τ1 + ∆τ2 + ∆τ3
(30)

Normally it is easy to measure the times of the three hyperbola tops, ∆τ1, ∆τ1 + ∆τ2

and ∆τ1 + ∆τ2 + ∆τ3. Using methods in chapter ?? we can measure the RMS velocities V2

and V3. With these we can solve for the interval velocity v3 in the third layer. Rearrange
(30) and (29) to get

(∆τ1 + ∆τ2 + ∆τ3)V 2
3 = v2

1∆τ1 + v2
2∆τ2 + v2

3∆τ3 (31)
(∆τ1 + ∆τ2)V 2

2 = v2
1∆τ1 + v2

2∆τ2 (32)

and subtract getting the squared interval velocity v2
3

v2
3 =

(∆τ1 + ∆τ2 + ∆τ3)V 2
3 − (∆τ1 + ∆τ2)V 2

2

∆τ3
(33)
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For any real earth model we would not like an imaginary velocity which is what could
happen if the squared velocity in (33) happened to be negative. You see that this means
that the RMS velocity we estimate for the third layer cannot be too much smaller than the
one we estimate for the second layer.

Nonhyperbolic curves

Occasionally data does not fit a hyperbolic curve very well. Two other simple fitting func-
tions are

t2 = τ2 +
x2

v2
+ x4 × parameter (34)

(t− t0)2 = (τ − t0)2 +
x2

v2
(35)

Equation (34) has an extra adjustable parameter of no simple interpretation other than
the beginning of a power series in x2. I prefer Equation (35) where the extra adjustable
parameter is a time shift t0 which has a simple interpretation, namely, a time shift such as
would result from a near-surface low velocity layer. In other words, a datum correction.

Velocity increasing linearly with depth

Theoreticians are delighted by velocity increasing linearly with depth because it happens
that many equations work out in closed form. For example, rays travel in circles. We will
need convenient expressions for velocity as a function of traveltime depth and RMS velocity
as a function of traveltime depth. Let us get them. We take the interval velocity v(z)
increasing linearly with depth:

v(z) = v0 + αz (36)

This presumption can also be written as a differential equation:

dv

dz
= α. (37)

The relationship between z and vertical two-way traveltime τ(z) (see equation (27)) is also
given by a differential equation:

dτ

dz
=

2
v(z)

. (38)

Letting v(τ) = v(z(τ)) and applying the chain rule gives the differential equation for v(τ):

dv

dz

dz

dτ
=

dv

dτ
=

vα

2
, (39)

whose solution gives us the desired expression for interval velocity as a function of trav-
eltime depth.

v(τ) = v0 eατ/2. (40)
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Prior RMS velocity

Substituting the theoretical interval velocity v(τ) from equation (40) into the definition of
RMS velocity V (τ) (equation (25)) yields:

τ V 2(τ) =
∫ τ

0
v2(τ ′) dτ ′ (41)

= v2
0

eατ − 1
α

. (42)

Thus the desired expression for RMS velocity as a function of traveltime depth is:

V (τ) = v0

√
eατ − 1

ατ
(43)

For small values of ατ , this can be approximated as

V (τ) ≈ v0

√
1 + ατ/2. (44)


