next up previous [pdf]

Next: Space-shift imaging condition Up: Time-shift imaging condition in Previous: Space-shift and time-shift imaging

Angle transformation in wave-equation imaging

Using the definitions introduced in the preceding section, we can make the standard notations for source and receiver coordinates: ${ \bf s}= { \bf m}- { \bf h}$ and ${ \bf r}= { \bf m}+ { \bf h}$. The traveltime from a source to a receiver is a function of all spatial coordinates of the seismic experiment $ t = t \left ({ \bf m},{ \bf h}\right )$. Differentiating $t$ with respect to all components of the vectors ${ \bf m}$ and ${ \bf h}$, and using the standard notations $ {\bf p}_\alpha = \nabla_\alpha t$, where $\alpha=\{{ \bf m},{ \bf h},{ \bf s},{ \bf r}\}$, we can write:
$\displaystyle { \bf p}_{ \bf m}$ $\textstyle =$ $\displaystyle { \bf p}_{ \bf r}+ { \bf p}_{ \bf s}\;,$ (11)
$\displaystyle { \bf p}_{ \bf h}$ $\textstyle =$ $\displaystyle { \bf p}_{ \bf r}- { \bf p}_{ \bf s}\;.$ (12)

From equations (11)-(12), we can write
$\displaystyle 2 { \bf p}_{ \bf s}$ $\textstyle =$ $\displaystyle { \bf p}_{ \bf m}- { \bf p}_{ \bf h}\;,$ (13)
$\displaystyle 2 { \bf p}_{ \bf r}$ $\textstyle =$ $\displaystyle { \bf p}_{ \bf m}+ { \bf p}_{ \bf h}\;.$ (14)

vec3
vec3
Figure 1.
Geometric relations between ray vectors at a reflection point.
[pdf] [png] [xfig]

By analyzing the geometric relations of various vectors at an image point (Figure 1), we can write the following trigonometric expressions:
$\displaystyle \vert{ \bf p}_{ \bf h}\vert^2$ $\textstyle =$ $\displaystyle \vert{ \bf p}_{ \bf s}\vert^2 + \vert{ \bf p}_{ \bf r}\vert^2 - 2 \vert{ \bf p}_{ \bf s}\vert\vert{ \bf p}_{ \bf r}\vert\cos(2 \theta ) \;,$ (15)
$\displaystyle \vert{ \bf p}_{ \bf m}\vert^2$ $\textstyle =$ $\displaystyle \vert{ \bf p}_{ \bf s}\vert^2 + \vert{ \bf p}_{ \bf r}\vert^2 + 2 \vert{ \bf p}_{ \bf s}\vert\vert{ \bf p}_{ \bf r}\vert\cos(2 \theta ) \;.$ (16)

Equations (15)-(16) relate wavefield quantities, ${ \bf p}_{ \bf h}$ and ${ \bf p}_{ \bf m}$, to a geometric quantity, reflection angle $\theta $. Analysis of these expressions provide sufficient information for complete decompositions of migrated images in components for different reflection angles.



Subsections
next up previous [pdf]

Next: Space-shift imaging condition Up: Time-shift imaging condition in Previous: Space-shift and time-shift imaging

2013-08-29