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For many years, it has been true that our most powerful signal-analysis techniques are
in one-dimensional space, while our most important applications are in multi dimensional
space. The helical coordinate system makes a giant step toward overcoming this difficulty.

Many geophysical map estimation applications appear to be multidimensional, but in
reality they are one-dimensional. To see the tip of the iceberg, consider this example: On

a 2-dimensional Cartesian mesh, the function

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

has the autocorrelation
1 2 1
2 4 2
1 2 1

.

Likewise, on a 1-dimensional cartesian mesh,

the function 1 1 0 0 · · · 0 1 1

has the autocorrelation 1 2 1 0 · · · 0 2 4 2 0 · · · 1 2 1 .

Observe the numbers in the 1-dimensional world are identical with the numbers in the
2-dimensional world. This correspondence is no accident.

FILTERING ON A HELIX

Figure 1 shows some 2-dimensional shapes that are convolved together. The left panel
shows an impulse response function, the center shows some impulses, and the right shows
the superposition of responses.

Figure 1: Two-dimensional convolution as performed in one dimension by module helicon
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A surprising, indeed amazing, fact is that Figure 1 was not computed with a 2-dimensional
convolution program. It was computed with a 1-dimensional computer program. It could
have been done with anybody’s 1-dimensional convolution program, either in the time do-
main or in the Fourier domain. This magical trick is done with the helical coordinate
system.

A basic idea of filtering, be it in one dimension, two dimensions, or more, is that you
have some filter coefficients and some sampled data; you pass the filter over the data; and
at each location you find an output by crossmultiplying the filter coefficients times the
underlying data and summing the products.

The helical coordinate system is much simpler than you might imagine. Ordinarily, a
plane of data is thought of as a collection of columns, side by side. Instead, imagine the
columns stored “end-to-end,” and then coiled around a cylinder. The concatenated columns
make a helix. This arrangement is Fortran’s way of storing 2-D arrays in 1-dimensional
memory, and it is exactly what we need for this helical mapping. Seismologists sometimes
use the word “supertrace” to describe a collection of seismograms stored end-to-end.

Figure 2 shows a helical mesh for 2-D data on a cylinder. Darkened squares depict a
2-D filter shaped like the Laplacian operator ∂xx + ∂yy. The input data, the filter, and the
output data are all on helical meshes, all of which could be unrolled into linear strips. A
compact 2-D filter like a Laplacian on a helix is a sparse 1-D filter with long empty gaps.

d

a b c

Figure 2: Filtering on a helix. The same filter coefficients overlay the same data values if
the 2-D coils are unwound into 1-D strips. (Mathematica drawing by Sergey Fomel)

Because the values output from filtering can be computed in any order, we can slide
the filter coil over the data coil in any direction. The order that you produce the outputs
is irrelevant. You could compute the results in parallel. We could, however, slide the filter
over the data in the screwing order that a nut passes over a bolt. The screw order is the
same order that would be used if we were to unwind the coils into 1-dimensional strips and
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convolve the strips across one another. The same filter coefficients overlay the same data
values if the 2-D coils are unwound into 1-D strips. The helix idea allows us to obtain the
same convolution output in either of two ways, a 1-dimensional way or a 2-dimensional way.
I used the 1-dimensional way to compute the obviously 2-dimensional result in Figure 1.

Review of 1-D recursive filters

Convolution is the operation we do on polynomial coefficients when we multiply polyno-
mials. Deconvolution is likewise for polynomial division. Often, these ideas are described
as polynomials in the variable Z. Take X(Z) to denote the polynomial with coefficients
being samples of input data, and let A(Z) likewise denote the filter. The convention I adopt
here is that the first coefficient of the filter has the value +1, so the filter’s polynomial is
A(Z) = 1 +a1Z+a2Z

2 + · · · . To see how to convolve, we now identify the coefficient of Zk

in the product Y (Z) = A(Z)X(Z). The usual case (k larger than the number Na of filter
coefficients) is:

yk = xk +
Na∑
i=1

aixk−i (1)

Convolution computes yk from xk, whereas, deconvolution (also called back substitution)
does the reverse. Rearranging (1); we get:

xk = yk −
Na∑
i=1

aixk−i (2)

where now, we are finding the output xk from its past outputs xk−i and the present input
yk. We see that the deconvolution process is essentially the same as the convolution pro-
cess, except that the filter coefficients are used with opposite polarity; and the coefficients
are applied to the past outputs instead of the past inputs. Needing past outputs is why
deconvolution must be done sequentially while convolution can be done in parallel.

Multidimensional deconvolution breakthrough

Deconvolution (polynomial division) can undo convolution (polynomial multiplication). A
magical property of the helix is that we can consider 1-D convolution to be the same as 2-D
convolution. Consequently, a second magical property: We can use 1-D deconvolution to
undo convolution, whether that convolution was 1-D or 2-D. Thus, we have discovered how
to undo 2-D convolution. We have discovered that 2-D deconvolution on a helix is equivalent
to 1-D deconvolution. The helix enables us to do multidimensional deconvolution.

Deconvolution is recursive filtering. Recursive filter outputs cannot be computed in
parallel, but must be computed sequentially as in one dimension, namely, in the order that
the nut screws on the bolt.

Recursive filtering sometimes solves big problems with astonishing speed. It can prop-
agate energy rapidly for long distances. Unfortunately, recursive filtering can also be un-
stable. The most interesting case, near resonance, is also near instability. There is a large
literature and extensive technology about recursive filtering in one dimension. The helix
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allows us to apply that technology to two (and more) dimensions. It is a huge technological
breakthrough.

In 3-D, we simply append one plane after another (like a 3-D Fortran array). It is easier
to code than to explain or visualize a spool or torus wrapped with string, etc.

Examples of simple 2-D recursive filters

Let us associate x- and y-derivatives with a finite-difference stencil or template. (For sim-
plicity, take ∆x = ∆y = 1.)

∂

∂x
= 1 −1 (3)

∂

∂y
=

1
−1

(4)

Convolving a data plane with the stencil (3) forms the x-derivative of the plane. Convolving
a data plane with the stencil (4) forms the y-derivative of the plane. On the other hand,
deconvolving with (3) integrates data along the x-axis for each y. Likewise, deconvolving
with (4) integrates data along the y-axis for each x. Next, we look at a fully 2-dimensional
operator (like the cross derivative ∂xy).

A nontrivial 2-dimensional convolution stencil is:

0 −1/4
1 −1/4

−1/4 −1/4
(5)

We convolve and deconvolve a data plane with this operator. Although everything is shown
on a plane, the actual computations are done in one dimension with equations (1) and (2).
Let us manufacture the simple data plane shown on the left in Figure 3. Beginning with a
zero-valued plane, we add in a copy of the filter (5) near the top of the frame. Nearby, add
another copy with opposite polarity. Finally, add some impulses near the bottom boundary.
The second frame in Figure 3 is the result of deconvolution by the filter (5) using the 1-
dimensional equation (2). Notice that deconvolution turns the filter into an impulse, while
it turns the impulses into comet-like images. The use of a helix is evident by the comet
images wrapping around the vertical axis.

The filtering in Figure 3 ran along a helix from left to right. Figure 4 shows a second
filtering running from right to left. Filtering in the reverse direction is the adjoint. After
deconvolving both ways, we have accomplished a symmetrical smoothing. The final frame
undoes the smoothing to bring us exactly back to where we started. The smoothing was
done with two passes of deconvolution, and it is undone by two passes of convolution. No
errors, and no evidence remains at any of the boundaries where we have wrapped and
truncated.

Chapter ?? explains the important practical role to be played by a multidimensional
operator for which we know the exact inverse. Other than multidimensional Fourier trans-
formation, transforms based on polynomial multiplication and division on a helix are the
only known easily invertible linear operators.
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Figure 3: Illustration of 2-D deconvolution. Left is the input. Right is after deconvolution
with the filter (5) as preformed by by module polydiv

Figure 4: Recursive filtering backward (leftward on the space axis) is done by the adjoint
of 2-D deconvolution. Here we see that 2-D deconvolution compounded with its adjoint is
exactly inverted by 2-D convolution and its adjoint.
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In seismology we often have occasion to steer summation along beams. Such an impulse
response is shown in Figure 5.

Figure 5: Useful for directional smoothing is a simulated dipping seismic arrival, made by
combining a simple low-order 2-D filter with its adjoint.

Of special interest are filters that destroy plane waves. The inverse of such a filter creates
plane waves. Such filters are like wave equations. A filter that creates two plane waves is
illustrated in figure 6.

Figure 6: A simple low-order 2-D filter with inverse containing plane waves of two different
dips. One is spatially aliased.

Coding multidimensional convolution and deconvolution

Let us unroll the filter helix seen previously in Figure 2, and see what we have. Start from
the idea that a 2-D filter is generally made from a cluster of values near one another in
two dimensions similar to the Laplacian operator in the figure. We see that in the helical
approach, a 2-D filter is a 1-D filter containing some long intervals of zeros. These intervals
complete the length of a single 1-D seismogram.

Our program for 2-D convolution with a 1-D convolution program, could convolve with
the somewhat long 1-D strip, but it is much more cost effective to ignore the many zeros,
which is what we do. We do not multiply by the backside zeros, nor do we even store
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those zeros in memory. Whereas, an ordinary convolution program would do time shifting
by a code line like iy=ix+lag, Module helicon ignores the many zero filter values on
backside of the tube by using the code iy=ix+lag[ia] where a counter ia ranges over
the nonzero filter coefficients. Before operator helicon is invoked, we need to prepare two
lists, one list containing nonzero filter coefficients flt[ia], and the other list containing
the corresponding lags lag[ia] measured to include multiple wraps around the helix. For
example, the 2-D Laplace operator can be thought of as the 1-D filter:

1 0 · · · 0 1 −4 1 0 · · · 0 1 → helical boundaries
1

1 −4 1
1

(6)

The first filter coefficient in equation (6) is +1 as implicit to module helicon. To apply
the Laplacian on a 1,000 × 1,000 mesh requires the filter inputs:

i lag[i] flt[i]

--- ------ -----

0 999 1

1 1000 -4

2 1001 1

3 2000 1

Here, we choose to use “declaration of a type”, a modern computer language feature
that is absent from Fortran 77. Fortran 77 has the built in complex arithmetic type. In
module helix, we define a type filter, actually, a helix filter. After making this definition,
it is used by many programs. The helix filter consists of three vectors, a real valued vector
of filter coefficients, an integer valued vector of filter lags, and an optional vector that
has logical values “true” for output locations that are not computed (either because of
boundary conditions or because of missing inputs). The filter vectors are the size of the
nonzero filter coefficients (excluding the leading 1.), while the logical vector is long and
relates to the data size. The helix module allocates and frees memory for a helix filter.

api/c/helix.c

30 typedef struct s f h e l i x f i l t e r {
31 int nh ;
32 f loat ∗ f l t ;
33 int∗ l ag ;
34 bool ∗ mis ;
35 f loat h0 ;
36 } ∗ s f f i l t e r ;

For those of you with no C experience, the “->” appearing in the helix module denotes a
pointer. Fortran 77 has no pointers (or everything is a pointer). The behavior of pointers is
somewhat different in each language. In C, pointer behavior is straightforward. In module
helicon you see the expression aa->flt[ia]. It refers to the filter named aa. Any filter
defined by the helix module contains three vectors, one of which is named flt. The
second component of the flt vector in the aa filter is referred to as aa->flt[1] which in
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the foregoing example refers to the value 4.0 in the center of the Laplacian operator. For
data sets like above with 1,000 points on the 1-axis, this value 4.0 occurs after 1,000 lags,
thus aa->lag[1]=1000.

Our first convolution operator tcai1 was limited to one dimension and a particular
choice of end conditions. With the helix and C pointers, the operator helicon is a multi-
dimensional filter with considerable flexibility (because of the mis vector) to work around
boundaries and missing data. The code fragment aa->lag[ia] corresponds to b-1 in tcai1.

api/c/helicon.c

35 void s f h e l i c o n l o p ( bool adj , bool add ,
36 int nx , int ny , f loat ∗ xx , f loat ∗yy )
37 /∗< l i n e a r opera tor >∗/
38 {
39 int ia , iy , i x ;
40

41 s f c o p y l o p ( adj , add , nx , nx , xx , yy ) ;
42

43 for ( i a = 0 ; i a < aa−>nh ; i a++) {
44 for ( i y = aa−>l ag [ i a ] ; i y < nx ; i y++) {
45 i f ( aa−>mis != NULL && aa−>mis [ i y ] ) continue ;
46 i x = iy − aa−>l ag [ i a ] ;
47 i f ( adj ) {
48 xx [ i x ] += yy [ iy ] ∗ aa−> f l t [ i a ] ;
49 } else {
50 yy [ i y ] += xx [ ix ] ∗ aa−> f l t [ i a ] ;
51 }
52 }
53 }
54 }

Operator helicon did the convolution job for Figure 1. As with tcai1, the adjoint of
helix filtering is reversing the screw—filtering backwards.

The companion to convolution is deconvolution. The module polydiv is essentially the
same as polydiv1 but here it was coded using our new filter type in module helix which
simplifies our many future uses of convolution and deconvolution. Although convolution
allows us to work around missing input values, deconvolution does not (any input affects
all subsequent outputs), so polydiv never references aa->mis[ia].

KOLMOGOROFF SPECTRAL FACTORIZATION

Spectral factorization addresses a deep mathematical problem not solved by mathematicians
until 1939. Given any spectrum |F (ω)|, find a causal time function f(t) with this spectrum.
A causal time function is one that vanishes at negative time t < 0. We mix spectral
factorization with the helix idea to find many applications in geophysical image estimation.
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api/c/polydiv.c

39 void s f p o l y d i v l o p ( bool adj , bool add ,
40 int nx , int ny , f loat ∗ xx , f loat ∗yy )
41 /∗< l i n e a r opera tor >∗/
42 {
43 int ia , iy , i x ;
44

45 s f a d j n u l l ( adj , add , nx , ny , xx , yy ) ;
46

47 for ( i x =0; ix < nx ; i x++) t t [ i x ] = 0 . ;
48

49 i f ( adj ) {
50 for ( i x = nx−1; i x >= 0 ; ix−−) {
51 t t [ i x ] = yy [ i x ] ;
52 for ( i a = 0 ; i a < aa−>nh ; i a++) {
53 i y = ix + aa−>l ag [ i a ] ;
54 i f ( i y >= ny ) continue ;
55 t t [ i x ] −= aa−> f l t [ i a ] ∗ t t [ i y ] ;
56 }
57 }
58 for ( i x =0; ix < nx ; i x++) xx [ i x ] += t t [ i x ] ;
59 } else {
60 for ( i y = 0 ; iy < ny ; i y++) {
61 t t [ i y ] = xx [ i y ] ;
62 for ( i a = 0 ; i a < aa−>nh ; i a++) {
63 i x = iy − aa−>l ag [ i a ] ;
64 i f ( i x < 0) continue ;
65 t t [ i y ] −= aa−> f l t [ i a ] ∗ t t [ i x ] ;
66 }
67 }
68 for ( i y =0; iy < ny ; i y++) yy [ i y ] += t t [ i y ] ;
69 }
70 }
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The most abstract method of spectral factorization is of the Russian mathematician
A.N.Kolmogoroff. I include it here, because it is by far the fastest, so much so that giant
problems become practical, such as the solar physics example coming up.

Given that C(ω) Fourier transforms to a causal function of time, it is next proven that
eC Fourier transforms to a causal function of time. Its filter inverse is e−C . Grab yourself
a cup of coffee and hide yourself away in a quiet place while you focus on the proof in the
next paragraph.

A causal function cτ vanishes at negative τ . Its Z transform C(Z) = c0 + c1Z + c2Z
2 +

c3Z
3 + · · · , with Z = eiω∆t is really a Fourier sum. Its square C(Z)2 convolves a causal

with itself so it is causal. Each power of C(Z) is causal, therefore, eC = 1 +C+C2/2 + · · · ,
a sum of causals, is causal. The time-domain coefficients for eC could be computed putting
polynomials into power series or computed faster with Fourier transforms (by understanding
C(Z = eiω∆t) as an FT.) By the same reasoning, the wavelet eC has inverse e−C which is
also causal. A causal with a causal inverse is said to be “minimum phase.” The filter
1−Z/2 with inverse 1 +Z/2 +Z2/4 + · · · is minimum phase because both are causal, and
they multiply to make the impulse “1”, so are mutually inverse. The delay filter Z5 has the
noncausal inverse Z−5 which is not causal (output before input).

The next paragraph defines “Kolmogoroff spectral factorization.” It arises in applica-
tions where one begins with an energy spectrum |r|2 and factors it into an reiφ times its
conjugate. The inverse Fourier transform of that reiφ is causal.

Relate amplitude r = r(ω) and phase φ = φ(ω) to a causal time function cτ .

|r|eiφ = eln |r|eiφ = eln |r|+iφ = ec0+c1Z+c2Z2+c3Z3+··· = e
P
τ=0 cτZ

τ
(7)

Given a spectrum r(ω), we find a filter with that spectrum. Because r(ω) is a real even
function of ω, so is its logarithm. Let the inverse Fourier transform of ln |r(ω)| be uτ , where
uτ is a real even function of time. Imagine a real odd function of time vτ .

|r|eiφ = eln |r|+iφ = e
P
τ (uτ+vτ )Zτ (8)

The phase φ(ω) transforms to vτ . We can assert causality by choosing vτ so that uτ +vτ = 0
(= cτ ) for all negative τ . This choice defines vτ at negative τ . Since vτ is odd, it is also
known at positive lags. More simply, vτ is created when uτ is multiplied by a step function
of size 2. This causal exponent (c0, c1, · · · ) creates a causal filter |r|eiφ with the specified
spectrum r(ω).

We easily manufacture an inverse filter by changing the polarity of the cτ . This filter
is also causal by the same reasoning. Thus, these filters are causal with a causal inverse.
Such filters are commonly called “minimum phase.”

Spectral factorization arises in a variety of contexts. Here is one: Rain drops showering
on a tin roof create for you a signal with a spectrum you can compute, but what would be
the sound of a single drop, the wavelet of a single drop? Spectral factorization gives the
answer. Divide this wavelet out from the data to get a record of impulses, one for each rain
drop (theoretically!). Similarly, the boiling surface of the sun is coming soon.
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Constant Q medium

From the absorption law of a material, spectral factorization yields its impulse response.
The most basic absorption law is the constant Q model. According to it, for a downgoing
wave, the absorption is proportional to the frequency ω, proportional to time in the medium
z/v, and inversely proportional to the “quality” Q of the medium. Altogether, the spectrum
of a wave passing through a thickness z is changed by the factor e−|ω|τ = e−|ω|(z/v)/Q. This
frequency function is plotted in the top line of Figure 7.

Figure 7: Autocorrelate the bottom signal to get the middle, then Fourier transform it to
get the top. Spectral factorization works the other way, from top to bottom.

The middle function in Figure 7 is the autocorrelation giving on top the spectrum e−|ω|τ .
The third function is the factorization. An impulse entering the medium comes out with this
shape. There is no physics in this analysis, only mathematics that assumes the broadened
pulse is causal with an abrupt arrival. The short wavelengths are concentrated near the
sharp corner, while the long wavelengths are spread throughout. A physical system could
cause the pulse to spread further (effectively by an additional all-pass filter), but physics
cannot make it more compact.

All distances from the source see the same shape, but stretched in proportion to distance.
The apparent Q is the traveltime to the source divided by the width of the pulse.

Causality in two dimensions

Our foundations, the basic convolution-deconvolution pair (1) and (2) are applicable only
to filters with all coefficients after zero lag. Filters of physical interest generally concentrate
coefficients near zero lag. Requiring causality in 1-D and concentration in 2-D leads to
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shapes such as these:

h c 0
p d 0
q e 1
s f a
u g b

=

h c ·
p d ·
q e ·
s f a
u g b

+

· · 0
· · 0
· · 1
· · ·
· · ·

2−D filter = variable + constrained

(9)

where a, b, c, ..., u are coefficients we find by least squares.

The complete story is rich in mathematics and in concepts; but to sum up, filters fall
into two categories according to the numerical values of their coefficients. There are filters
for which equations (1) and (2) work as desired and expected. These filters are called
“minimum phase.” There are also filters for which equation (2) is a disaster numerically,
the feedback process diverging to infinity.

Divergent cases correspond to physical processes that are not simply described by initial
conditions but require also reflective boundary conditions, so information flows backward,
i.e., anticausally. Equation (2) only allows for initial conditions.

I oversimplify by trying to collapse an entire book FGDP (Fundamentals of Geophysical
Data Processing) into a few sentences by saying here that for any fixed 1-D spectrum there
exist many filters. Of these, only one has stable polynomial division. That filter has its
energy compacted as soon as possible after the “1.0” at zero lag.

Causality in three dimensions

The top plane in Figure 8 is the 2-D filter seen in equation (9). Geometrically, the 3-
dimensional generalization of a helix, Figure 8 shows a causal filter in three dimensions.
Think of the little cubes as packed with the string of the causal 1-D function. Under the
“1” is packed with string, but none above it. Behind the “1” is packed with string, but
none in front of it. The top plane can be visualized as the area around the end of the 1-D
string. Above the top plane are zero-valued anticausal filter coefficients.

This 3-D cube is like the usual Fortran packing of a 3-D array with one confusing
difference. The starting location where the “1” is located is not at the Fortran (1,1,1)
location. Details of indexing are essential, but complicated, and found near the end of this
chapter.

The “1” that defines the end of the 1-dimensional filter becomes in 3-D a point of central
symmetry. Every point inside a 3-D filter has a mate opposite the “1” that is outside the
filter. Altogether they fill the whole space leaving no holes. From this you may deduce that
the “1” must lie on the side of a face as shown in Figure 8. It cannot lie on the corner of
a cube. It cannot be at the Fortran of f(1,1,1). If it were there, the filter points inside
with their mirror points outside would not full the entire space. It could not represent all
possible 3-D autocorrelation functions.
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Figure 8: A 3-D causal filter at the
starting end of a 3-D helix.

Blind deconvolution and the solar cube

An area of applications that leads directly to spectral factorization is “blind deconvolution.”
Here, we begin with a signal. We form its spectrum and factor it. We could simply inspect
the filter and interpret it, or we might deconvolve it out from the original data. This topic
deserves a fuller exposition, say for example as defined in some of my earlier books. Here,
we inspect a novel example that incorporates the helix.

Solar physicists have learned how to measure the seismic field of the sun surface. It is
chaotic. If you created an impulsive explosion on the surface of the sun, what would the
response be? James Rickett and I applied the helix idea along with Kolmogoroff spectral
factorization to find the impulse response of the sun. Figure 9 shows a raw data cube
and the derived impulse response. The sun is huge, so the distance scale is in megameters
(Mm). The United States is 5-Mm wide. Vertical motion of the sun is measured with a
videocamera-like device that measures vertical motion by an optical doppler shift. From an
acoustic/seismic point of view, the surface of the sun is a very noisy place. The figure shows
time in kiloseconds (Ks). We see roughly 15 cycles in 5 Ks which is 1 cycle in roughly 333
seconds. Thus, the sun seems to oscillate vertically with roughly a 5-minute period. The
top plane of the raw data in Figure 9 (left panel) happens to have a sun spot in the center.
The data analysis here is not affected by the sun spot, so please ignore it.

The first step of the data processing is to transform the raw data to its spectrum. With
the helix assumption, computing the spectrum is virtually the same thing in 1-D space as in
3-D space. The resulting spectrum was passed to Kolmogoroff spectral factorization code,
a 1-D code. The resulting impulse response is on the right side of Figure 9. The plane we
see on the right top is not lag time τ = 0; it is lag time τ = 3 Ks. It shows circular rings,
as ripples on a pond. Later lag times (not shown) would be the larger circles of expanding
waves. The front and side planes show tent-like shapes.

The slope of the tent gives the (inverse) velocity of the wave (as seen on the surface of
the sun). The horizontal velocity we see on the sun surface turns out (by Snell’s law) to be
the same as that at the bottom of the ray. On the front face at early times we see the low-
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Figure 9: Raw seismic data on the sun (left). Impulse response of the sun (right) derived
by Helix-Kolmogoroff spectral factorization.

velocity (steep) wavefronts and at later times we see the faster waves. Later arrivals reach
more deeply into the sun except when they are late because they are “multiple reflections,”
diving waves that bend back upward reaching the surface, then bouncing down again.

Multiple reflections from the sun surface are seen on the front face of the cube with the
same slope, but double the time and distance. On the top face, the first multiple reflection
is the inner ring with the shorter wavelengths.

Very close to t = 0 see horizontal waveforms extending only a short distance from the
origin. These are electromagnetic waves of essentially infinite velocity.

FACTORED LAPLACIAN == HELIX DERIVATIVE

I had learned spectral factorization as a method for single seismograms. After I learned it,
every time I saw a positive function I would wonder if it made sense to factor it. When total
field magnetometers were invented, I found it as a way to deduce vertical and horizontal
magneticomponents. A few pages back, you saw how to use factorization to deduce the
waveform passing through an absorptive medium. Then, we saw how the notion of “impulse
response” applies not only to signals, but allows use of random noise on the sun to deduce
the 3-D impulse response there. But the most useful application of spectral factorization
so far is what comes next, factoring the Laplace operator, −∇2. Its Fourier transform
−((ikx)2 + (iky)2) ≥ 0 is positive, so it is a spectrum. The useful tool we uncover I dub the
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“helix derivative.”

The signal:

r = −∇2 = −1 0 · · · 0 −1 4 −1 0 · · · 0 −1 (10)

is an autocorrelation function, because it is symmetrical about the “4,” and the Fourier
transform of −∇2 is −((ikx)2 + (iky)2) ≥ 0, which is positive for all frequencies (kx, ky).
Kolmogoroff spectral-factorization gives this wavelet h:

h = 1.791 −.651 −.044 −.024 · · · · · · −.044 −.087 −.200 −.558 (11)

In other words, the autocorrelation of (11) is (10). This fact is not obvious from the numbers,
because the computation requires a little work, but dropping all the small numbers allows
you a rough check.

In this book section only, I use abnormal notation for bold letters. Here h, r are signals,
while H and R are images, being neither matrices or vectors. Recall from Chapter ?? that
a filter is a signal packed into a matrix to make a filter operator.

Let the time reversed version of h be denoted hT. This notation is consistent with an
idea from Chapter ?? that the adjoint of a filter matrix is another filter matrix with a
reversed filter. In engineering, it is conventional to use the asterisk symbol “∗” to denote
convolution. Thus, the idea that the autocorrelation of a signal h is a convolution of the
signal h with its time reverse (adjoint) can be written as hT ∗ h = h ∗ hT = r.

Wind the signal r around a vertical-axis helix to see its 2-dimensional shape R:

r → helical boundaries
−1

−1 4 −1
−1

= R (12)

This 2-D image (which can be packed into a filter operator) is the negative of the finite-
difference representation of the Laplacian operator, generally denoted ∇2 = ∂2

∂x2 + ∂2

∂y2
. Now

for the magic: Wind the signal h around the same helix to see its 2-dimensional shape H

H =
1.791 −.651 −.044 −.024 · · ·

· · · −.044 −.087 −.200 −.558
(13)

In the representation (13), we see the coefficients diminishing rapidly away from maximum
value 1.791. My claim is that the 2-dimensional autocorrelation of (13) is (12). You verified
this idea previously when the numbers were all ones. You can check it again in a few
moments if you drop the small values, say 0.2 and smaller.

Physics on a helix can be viewed through the eyes of matrices and numerical analysis.
This presentation is not easy, because the matrices are so huge. Discretize the (x, y)-plane
to an N ×M array, and pack the array into a vector of N ×M components. Likewise, pack
minus the Laplacian operator −(∂xx + ∂yy) into a matrix. For a 4× 3 plane, that matrix is
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shown in equation (14).

− ∇2 =



4 −1 · · −1 · · · · · · ·
−1 4 −1 · · −1 · · · · · ·
· −1 4 −1 · · −1 · · · · ·
· · −1 4 h · · −1 · · · ·
−1 · · h 4 −1 · · −1 · · ·
· −1 · · −1 4 −1 · · −1 · ·
· · −1 · · −1 4 −1 · · −1 ·
· · · −1 · · −1 4 h · · −1
· · · · −1 · · h 4 −1 · ·
· · · · · −1 · · −1 4 −1 ·
· · · · · · −1 · · −1 4 −1
· · · · · · · −1 · · −1 4



(14)

The 2-dimensional matrix of coefficients for the Laplacian operator is shown in (14), where
on a Cartesian space, h = 0, and in the helix geometry, h = −1. (A similar partitioned
matrix arises from packing a cylindrical surface into a 4 × 3 array.) Notice that the parti-
tioning becomes transparent for the helix, h = −1. With the partitioning thus invisible, the
matrix simply represents 1-dimensional convolution and we have an alternative analytical
approach, 1-dimensional Fourier transform. We often need to solve sets of simultaneous
equations with a matrix similar to (14). The method we use is triangular factorization.

Although the autocorrelation r has mostly zero values, the factored autocorrelation a
has a great number of nonzero terms. Fortunately, the coefficients seem to be shrinking
rapidly towards a gap in the middle, so truncation (of those middle coefficients) seems
reasonable. I wish I could show you a larger matrix, but all I can do is to pack the signal
a into shifted columns of a lower triangular matrix A like this:

A =



1.8 · · · · · · · · · · ·
−.6 1.8 · · · · · · · · · ·
. . . −.6 1.8 · · · · · · · · ·

−.2 . . . −.6 1.8 · · · · · · · ·

−.6 −.2 . . . −.6 1.8 · · · · · · ·

· −.6 −.2 . . . −.6 1.8 · · · · · ·

· · −.6 −.2 . . . −.6 1.8 · · · · ·

· · · −.6 −.2 . . . −.6 1.8 · · · ·

· · · · −.6 −.2 . . . −.6 1.8 · · ·

· · · · · −.6 −.2 . . . −.6 1.8 · ·

· · · · · · −.6 −.2 . . . −.6 1.8 ·

· · · · · · · −.6 −.2 . . . −.6 1.8



(15)

If you allow me some truncation approximations, I now claim that the Laplacian repre-
sented by the matrix in equation (14) is factored into two parts −∇2 = ATA, which are
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upper and lower triangular matrices whose product forms the autocorrelation seen in equa-
tion (14). Recall that triangular matrices allow quick solutions of simultaneous equations
by backsubstitution, which is what we are doing with our deconvolution program.

Spectral factorization produces not merely a causal wavelet with the required autocorre-
lation. It produces one that is stable in deconvolution. Using H in 1-dimensional polynomial
division, we can solve many formerly difficult problems very rapidly. Consider the Laplace
equation with sources (Poisson’s equation). Polynomial division and its reverse (adjoint)
gives us p = (q/H)/HT, which means we have solved ∇2p = −q by using polynomial
division on a helix. Using the 7 coefficients shown, the cost is 14 multiplications (because
we need to run both ways) per mesh point. An example is shown in Figure 10.

Figure 10: Deconvolution by a filter with autocorrelation being the 2-dimensional Laplacian
operator. Amounts to solving the Poisson equation. Left is q; Middle is q/H; Right is
(q/H)/HT.

Figure ?? contains both the helix derivative and its inverse. Contrast those filters
to the x- or y-derivatives (doublets) and their inverses (axis-parallel lines in the (x, y)-
plane). Simple derivatives are highly directional, whereas, the helix derivative is only slightly
directional achieving its meagre directionality entirely from its phase spectrum.

HELIX LOW-CUT FILTER

Because the autocorrelation of H is HT ∗H = R = −∇2 is a second derivative, the operator
H must be something like a first derivative. As a geophysicist, I found it natural to compare
the operator ∂

∂y with H by applying the helix derivative H to a local topographic map.
The result shown in Figure 11 is that H enhances drainage patterns whereas ∂

∂y enhances
mountain ridges.

The operator H has curious similarities and differences with the familiar gradient and
divergence operators. In 2-dimensional physical space, the gradient maps one field to two
fields (north slope and east slope). The factorization of −∇2 with the helix gives us the
operator H that maps one field to one field. Being a one-to-one transformation (unlike gra-
dient and divergence), the operator H is potentially invertible by deconvolution (recursive
filtering).

I have chosen the name “helix derivative” or “helical derivative” for the operator H. A
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Figure 11: Topography, helical derivative, slope south.
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flag pole has a narrow shadow behind it. The helix integral (middle frame of Figure ??)
and the helix derivative (left frame) show shadows with an angular bandwidth approaching
180◦.

Our construction makes H have the energy spectrum k2
x + k2

y, so the magnitude of the

Fourier transform is
√
k2
x + k2

y. It is a cone centered at the origin with there the value zero.
By contrast, the components of the ordinary gradient have amplitude responses |kx| and
|ky| that are lines of zero across the (kx, ky)-plane.

The rotationally invariant cone in the Fourier domain contrasts sharply with the nonro-
tationally invariant helix derivative in (x, y)-space. The difference must arise from the phase
spectrum. The factorization (13) is nonunique because causality associated with the helix
mapping can be defined along either x- or y-axes; thus the operator (13) can be rotated or
reflected.

In practice, we often require an isotropic filter. Such a filter is a function of kr =√
k2
x + k2

y. It could be represented as a sum of helix derivatives to integer powers.

If you want to see some tracks on the side of a hill, you want to subtract the hill and
see only the tracks. Usually, however, you do not have a very good model for the hill. As
an expedient, you could apply a low-cut filter to remove all slowly variable functions of
altitude. In Chapter ?? we found the Sea of Galilee in Figure ?? to be too smooth for
viewing pleasure, so we made the roughened versions in Figure ??, a 1-dimensional filter
that we could apply over the x-axis or the y-axis. In Fourier space, such a filter has a
response function of kx or a function of ky. The isotropy of physical space tells us it would
be more logical to design a filter that is a function of k2

x + k2
y. In Figure 11 we saw that

the helix derivative H does a nice job. The Fourier magnitude of its impulse response is
kr =

√
k2
x + k2

y. There is a little anisotropy connected with phase (which way should we
wind the helix, on x or y?), but it is not nearly so severe as that of either component of the
gradient, the two components having wholly different spectra, amplitude |kx| or |ky|.

Improving low-frequency behavior

It is nice having the 2-D helix derivative, but we can imagine even nicer 2-D low-cut filters.
In 1-D, we designed a filter with an adjustable parameter, a cutoff frequency. In 1-D, we
compounded a first derivative (which destroys low frequencies) with a leaky integration
(which undoes the derivative at all other frequencies). The analogous filter in 2-D would
be −∇2/(−∇2 + k2

0), which would first be expressed as a finite difference (−Z−1 + 2.00 −
Z)/(−Z−1 + 2.01− Z) and then factored as we did the helix derivative.

We can visualize a plot of the magnitude of the 2-D Fourier transform of the filter
equation (13). It is a 2-D function of kx and ky and it should resemble kr =

√
k2
x + k2

y. The

point of the cone kr =
√
k2
x + k2

y becomes rounded by the filter truncation, so kr does not
reach zero at the origin of the (kx, ky)-plane. We can force it to vanish at zero frequency
by subtracting .183 from the lead coefficient 1.791. I did not do that subtraction in Figure
12, which explains the whiteness in the middle of the lake. I gave up on playing with both
k0 and filter length; and now, merely play with the sum of the filter coefficients.
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Figure 12: Galilee roughened by gradient and by helical derivative.

Filtering mammograms

I prepared a half dozen medical X-rays like Figure 13. The doctor brought her young son to
my office one evening to evaluate the results. In a dark room, I would show the original X-
ray on a big screen and then suddenly switch to the helix derivative. Every time I did this,
her son would exclaim “Wow!” The doctor was not so easily impressed, however. She was
not accustomed to the unfamiliar image. Fundamentally, the helix derivative applied to her
data does compress the dynamic range making weaker features more readily discernible. We
were sure of this from theory and various geophysical examples. The subjective problem was
her unfamiliarity with our display. I found that I could always spot anomalies more quickly
on the filtered display, but then I would feel more comfortable when I would discover those
same anomalies also present (though less evident) in the original data. Retrospectively, I
felt the doctor would likely have been equally impressed had I used a spatial low-cut filter
instead of the helix derivative. This simpler filter would have left the details of her image
unchanged (above the cutoff frequency), altering only the low frequencies, thereby allowing
me to increase the gain.

First, I had a problem preparing Figure 13. It shows the application of the helix deriva-
tive to a medical X-ray. The problem was that the original X-ray was all positive values
of brightness, so there was a massive amount of spatial low frequency present. Obviously,
an x-derivative or a y-derivative would eliminate the low frequency, but the helix derivative
did not. This unpleasant surprise arises because the filter in equation (13) was truncated
after a finite number of terms. Adding up the terms actually displayed in equation (13), the
sum comes to .183, whereas, theoretically the sum of all the terms should be zero. From the
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Figure 13: Mammogram (medical
X-ray). The cancer is the “spoked
wheel.” (I apologize for the inability
of paper publishing technology to ex-
hibit a clear grey image.) The tiny
white circles are metal foil used for
navigation. The little halo around a
circle exhibits the impulse response
of the helix derivative.

ratio of .183/1.791, we can say the filter pushes zero-frequency amplitude 90% of the way to
zero value. When the image contains very much zero-frequency amplitude, more coefficients
are needed. I did use more, but simply removing the mean saved me from needing a costly
number of filter coefficients.

A final word about the doctor. As she was about to leave my office she suddenly asked
if I had scratched one of her X-rays. We were looking at the helix derivative, and it did
seem to show a big scratch. What should have been a line was broken into a string of dots.
I apologized in advance and handed her the original film negatives, which she proceeded
to inspect. “Oh,” she said, “Bad news. There are calcification nodules along the ducts.”
So, the scratch was not a scratch, instead an important detail had not been noticed on
the original X-ray. Times have changed since then. Nowadays, mammography has become
digital; and appropriate filtering is defaulted in the presentation.

In preparing an illustration for here, I learned one more lesson. The scratch was a small
part of a big image, so I enlarged a small portion of the mammogram for display here.
The very process of selecting a small portion followed by scaling the amplitude between
maximum and minimum darkness of printer ink had the effect enhancing the visibility of
the scratch on the mammogram. Now, Figure 14 shows the two calcification nodule strings
perhaps even clearer than on the helix derivative.

SUBSCRIPTING A MULTIDIMENSIONAL HELIX

Basic utilities transform back and forth between multidimensional matrix coordinates and
helix coordinates. The essential module used repeatedly in applications later in this book
is createhelix. We begin here from its intricate underpinnings.
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Figure 14: Not a scratch. Reducing the (x, y)-space range of the illustration allowed boost-
ing the gain, thus making the nonscratch more prominent. Find both strings of calcification
nodules.

Fortran77 has a concept of a multidimensional array being equivalent to a 1-dimensional
array. Given that the hypercube specification nd=(n1,n2,n3,...) defines the storage
dimension of a data array, we can refer to a data element as either dd(i1,i2,i3,...)
or dd( i1 +n1*(i2-1) +n1*n2*(i3-1) +...). The helix says to refer to the multidimen-
sional data by its equivalent 1-dimensional index (sometimes called its vector subscript or
linear subscript).

The filter, however, is a much more complicated story than the data: First, we require
all filters to be causal. In other words, the Laplacian does not fit very well, because it is
intrinsically noncausal. If you really want noncausal filters, you need to provide your own
time shifts outside the tools supplied here. Second, a filter is usually a small hypercube,
say aa(a1,a2,a3,...) and would often be stored as such. For the helix we must store
it in a special 1-dimensional form. Either way, the numbers na= (a1,a2,a3,...) specify
the dimension of the hypercube. In cube form, the entire cube could be indexed multidi-
mensionally as aa(i1,i2,...) or it could be indexed 1-dimensionally as aa(ia,1,1,...)
or sometimes aa[ia] by letting ia cover a large range. When a filter cube is stored in its
normal “tightly packed” form, the formula for computing its 1-dimensional index ia is:

ia = i1 +a1*i2 +a1*a2*i3 + ...

When the filter cube is stored in an array with the same dimensions as the data, data[n3][n2][n1],
the formula for ia is:

ia = i1 +n1*i2 +n1*n2*i3 + ...

The following module decart contains two subroutines that explicitly provide us the
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transformations between the linear index i and the multidimensional indices ii= (i1,i2,...).
The two subroutines have the logical names cart2line and line2cart.

api/c/decart.c

29 void s f l i n e 2 c a r t ( int dim /∗ number o f dimensions ∗/ ,
30 const int∗ nn /∗ box s i z e [ dim ] ∗/ ,
31 int i /∗ l i n e coord ina te ∗/ ,
32 int∗ i i /∗ ca r t e s i an coord ina t e s [ dim ] ∗/ )
33 /∗< Convert l i n e to Cartes ian >∗/
34 {
35 int a x i s ;
36

37 for ( a x i s = 0 ; a x i s < dim ; a x i s++) {
38 i i [ a x i s ] = i%nn [ a x i s ] ;
39 i /= nn [ a x i s ] ;
40 }
41 }
42

43 int s f c a r t 2 l i n e ( int dim /∗ number o f dimensions ∗/ ,
44 const int∗ nn /∗ box s i z e [ dim ] ∗/ ,
45 const int∗ i i /∗ ca r t e s i an coord ina t e s [ dim ] ∗/ )
46 /∗< Convert Cartes ian to l i n e >∗/
47 {
48 int i , a x i s ;
49

50 i f ( dim < 1) return 0 ;
51

52 i = i i [ dim−1] ;
53 for ( a x i s = dim−2; a x i s >= 0 ; axis−−) {
54 i = i ∗nn [ a x i s ] + i i [ a x i s ] ;
55 }
56 return i ;
57 }

The Fortran linear index is closely related to the helix. There is one major difference,
however, and that is the origin of the coordinates. To convert from the linear index to
the helix lag coordinate, we need to subtract the Fortran linear index of the “1.0” usually
taken at center= (1+a1/2, 1+a2/2, ..., 1). (On the last dimension, there is no shift,
because nobody stores the volume of zero values that would occur before the 1.0.) The
decart module fails for negative subscripts. Thus, we need to be careful to avoid thinking
of the filter’s 1.0 (shown in Figure 8) as the origin of the multidimensional coordinate system
although the 1.0 is the origin in the 1-dimensional coordinate system.

Even in 1-D (see the matrix in equation (??)), to define a filter operator, we need to
know not only filter coefficients and a filter length, but we also need to know the data length.
To define a multidimensional filter using the helix idea, besides the properties intrinsic to
the filter, also the circumference of the helix, i.e., the length on the 1-axis of the data’s
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hypercube as well as the other dimensions nd=(n1,n2,...) of the data’s hypercube.

Thinking about convolution on the helix, it is natural to think about the filter and data
being stored in the same way, that is, by reference to the data size. Such storeage would
waste so much space, however, that our helix filter module helix instead stores the filter
coefficients in one vector and the lags in another. The i-th coefficient value of the filter
goes in aa->flt[i] and the i-th lag ia[i] goes in aa->lag[i]. The lags are the same as
the Fortran linear index except for the overall shift of the 1.0 of a cube of data dimension
nd. Our module for convolution on a helix, helicon. has already an implicit “1.0” at the
filter’s zero lag, so we do not store it. (It is an error to do so.)

Module createhelix allocates memory for a helix filter and builds filter lags along the
helix from the hypercube description. The hypercube description is not the literal cube
seen in Figure 8 but some integers specifying that cube: the data cube dimensions nd,
likewise the filter cube dimensions na, the parameter center identifying the location of the
filter’s “1.0”, and a gap parameter used in a later chapter. To find the lag table, module
createhelix first finds the Fortran linear index of the center point on the filter hypercube.
Everything before that has negative lag on the helix and can be ignored. (Likewise, in a
later chapter, we see a gap parameter that effectively sets even more filter coefficients to
zero so those extra lags can also be ignored.) Then, it sweeps from the center point over the
rest of the filter hypercube calculating for a data-sized cube nd, the Fortran linear index of
each filter element. Near the end of the code you see the calculation of a parameter lag0d,
which is the count of the number of zeros that a data-sized Fortran array would store in a
filter cube preceding the filter’s 1.0. We need to subtract this shift from the filter’s Fortran
linear index to get the lag on the helix.

A filter can be represented literally as a multidimensional cube like equation (9) shows
us in two dimensions or like Figure 8 shows us in three dimensions. Unlike the helical form,
in literal cube form, the zeros preceding the “1.0” are explicitly present, so lag0 needs to be
added back in to get the Fortran subscript. To convert a helix filter aa to Fortran’s multi-
dimensional hypercube cube(n1,n2,...) is module boxfilter: The boxfilter module is
normally used to display or manipulate a filter that was estimated in helical form (usually
estimated by the least-squares method).

A reasonable arrangement for a small 3-D filter is na={5,3,2} and center={3,2,1}.
Using these arguments, I used createhelix to create a filter. I set all the helix filter
coefficients to 2. Then I used module boxfilter to put it in a convenient form for display.
Finally, I printed it:

0.000 0.000 0.000 0.000 0.000

0.000 0.000 1.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

---------------------------------

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

2.000 2.000 2.000 2.000 2.000

Different data sets have different sizes. To convert a helix filter from one data size to
another, we could drop the filter into a cube with module cube. Then, we could extract it
with module unbox specifying any data set size we wish. Instead, we use module regrid
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user/gee/createhelix.c

36 s f f i l t e r c r e a t e h e l i x ( int ndim /∗ number o f dimensions ∗/ ,
37 int∗ nd /∗ data s i z e [ ndim ] ∗/ ,
38 int∗ cente r /∗ f i l t e r cen ter [ ndim ] ∗/ ,
39 int∗ gap /∗ f i l t e r gap [ ndim ] ∗/ ,
40 int∗ na /∗ f i l t e r s i z e [ ndim ] ∗/ )
41 /∗< a l l o c a t e and output a h e l i x f i l t e r >∗/
42 {
43 s f f i l t e r aa ;
44 int i i [ SF MAX DIM] , na123 , ia , nh , lag0a , lag0d , ∗ lag , i ;
45 bool sk ip ;
46

47 for ( na123 = 1 , i =0; i < ndim ; i++) na123 ∗= na [ i ] ;
48 l ag = ( int ∗) a l l o c a ( na123∗ s izeof ( int ) ) ;
49

50 /∗ index po in t i n g to the ”1.0” ∗/
51 l ag0a = s f c a r t 2 l i n e (ndim , na , c en t e r ) ;
52

53 nh=0;
54 /∗ l oop over l i n e a r index . ∗/
55 for ( i a = 1+lag0a ; i a < na123 ; i a++) {
56 s f l i n e 2 c a r t (ndim , na , ia , i i ) ;
57

58 sk ip = f a l s e ;
59 for ( i =0; i < ndim ; i++) {
60 i f ( i i [ i ] < gap [ i ] ) {
61 sk ip = true ;
62 break ;
63 }
64 }
65 i f ( sk ip ) continue ;
66

67 l ag [ nh ] = s f c a r t 2 l i n e (ndim , nd , i i ) ;
68 nh++;

/∗ go t another l i v e one ∗/
69 }
70 /∗ cen ter s h i f t f o r nd cube ∗/
71 lag0d = s f c a r t 2 l i n e (ndim , nd , c en t e r ) ;
72 aa = s f a l l o c a t e h e l i x (nh ) ; /∗ nh becomes s i z e o f f i l t e r ∗/
73

74 for ( i a =0; i a < nh ; i a++) {
75 aa−>l ag [ i a ] = lag [ i a ] − lag0d ;
76 aa−> f l t [ i a ] = 0 . ;
77 }
78

79 return aa ;
80 }
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user/gee/boxfilter.c

24 void box ( int dim /∗ number o f dimaneions ∗/ ,
25 const int ∗nd /∗ data s i z e [ dim ] ∗/ ,
26 const int ∗ cente r /∗ f i l t e r cen ter [ dim ] ∗/ ,
27 const int ∗na /∗ f i l t e r s i z e [ dim ] ∗/ ,
28 const s f f i l t e r aa /∗ input f i l t e r ∗/ ,
29 int nc /∗ box s i z e ∗/ ,
30 f loat ∗ cube /∗ output box [ nc ] ∗/ )
31 /∗< box i t >∗/
32 {
33 int i i [ SF MAX DIM ] ;
34 int j , lag0a , lag0d , id , i a ;
35

36 for ( i a =0; i a < nc ; i a++) {
37 cube [ i a ] = 0 . ;
38 }
39 l ag0a = s f c a r t 2 l i n e (dim , na , c en te r ) ; /∗ 1.0 in na . ∗/
40 cube [ lag0a ] = 1 . ; /∗ p lace i t . ∗/
41 lag0d = s f c a r t 2 l i n e (dim , nd , c en t e r ) ; /∗ 1.0 in nd . ∗/
42 for ( j =0; j < aa−>nh ; j++) { /∗ i n s p e c t the en t i r e h e l i x ∗/
43 id = aa−>l ag [ j ] + lag0d ;
44 s f l i n e 2 c a r t (dim , nd , id , i i ) ; /∗ i i = ca r t e s i an ∗/
45 i a = s f c a r t 2 l i n e (dim , na , i i ) ; /∗ i a = l i n e a r in aa ∗/
46 cube [ i a ] = aa−> f l t [ j ] ; /∗ copy the f i l t e r ∗/
47 }
48 }
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prepared by Sergey Fomel which does the job without reference to an underlying filter cube.
He explains his regrid module thus:

Imagine a filter being cut out of a piece of paper and glued on another paper,
which is then rolled to form a helix.

We start by picking a random point (let us call it rand) in the cartesian grid
and placing the filter so that its center (the leading 1.0) is on top of that point.
rand should be larger than (or equal to) center and smaller than min (nold,
nnew), otherwise the filter might stick outside the grid (our piece of paper.)
rand=nold/2 will do (assuming the filter is small), although nothing should
change if you replace nold/2 with a random integer array between center and
nold - na.

The linear coordinate of rand is h0 on the old helix and h1 on the new helix.
Recall that the helix lags aa->lag are relative to the center. Therefore, we need
to add h0 to get the absolute helix coordinate (h). Likewise, we need to subtract
h1 to return to a relative coordinate system.

user/gee/regrid.c

24 void r e g r i d ( int dim /∗ number o f dimensions ∗/ ,
25 const int∗ nold /∗ o ld data s i z e [ dim ] ∗/ ,
26 const int∗ nnew /∗ new data s i z e [ dim ] ∗/ ,
27 s f f i l t e r aa /∗ modi f ied f i l t e r ∗/ )
28 /∗< change data s i z e >∗/
29 {
30 int i , h0 , h1 , h , i i [SF MAX DIM ] ;
31

32 for ( i =0; i < dim ; i++) {
33 i i [ i ] = nold [ i ]/2−1;
34 }
35

36 h0 = s f c a r t 2 l i n e ( dim , nold , i i ) ; /∗ midpoint l a g on nold ∗/
37 h1 = s f c a r t 2 l i n e ( dim , nnew , i i ) ; /∗ on nnew ∗/
38 for ( i =0; i < aa−>nh ; i++) { /∗ f o r a l l f i l t e r c o e f f i c i e n t s ∗/
39 h = aa−>l ag [ i ] + h0 ;
40 s f l i n e 2 c a r t ( dim , nold , h , i i ) ;
41 aa−>l ag [ i ] = s f c a r t 2 l i n e ( dim , nnew , i i ) − h1 ;
42 }
43 }

INVERSE FILTERS AND OTHER FACTORIZATIONS

Mathematics sometimes seems a mundane subject, like when it does the “accounting” for
an engineer. Other times, as with the study of causality and spectral factorization, it brings
unexpected amazing new concepts into our lives. There are many little-known, fundamental
ideas here; a few touched on next.
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Start with an example. Consider a mechanical object. We can strain it and watch it
stress or we can stress it and watch it strain. We feel knowledge of the present and past
stress history is all we need to determine the present value of strain. Likewise, the converse,
history of strain should tell us the stress. We could say there is a filter that takes us from
stress to strain; likewise, another filter takes us from strain to stress. What we have here is
a pair of filters that are mutually inverse under convolution. In the Fourier domain, one is
literally the inverse of the other. What is remarkable is that in the time domain, both are
causal. They both vanish before zero lag τ = 0.

Not all causal filters have a causal inverse. The best known name for one that does
is “minimum-phase filter.” Unfortunately, this name is not suggestive of the fundamental
property of interest, “causal with a causal (convolutional) inverse.” I could call it CCI.
An example of a causal filter without a causal inverse is the unit delay operator—with Z-
transforms, the operator Z. If you delay something, you cannot get it back without seeing
into the future, which you are not allowed to do. Mathematically, 1/Z cannot be expressed
as a polynomial (actually, a convergent infinite series) in positive powers of Z.

Physics books do not tell us where to expect to find transfer functions that are CCI.
I think I know why they do not. Any causal filter has a “sharp edge” at zero time lag
where it switches from nonresponsiveness to responsiveness. The sharp edge might cause
the spectrum to be large at infinite frequency. If so, the inverse filter is small at infinite
frequency. Either way, one of the two filters is unmanageable with Fourier transform theory,
which (you might have noticed in the mathematical fine print) requires signals (and spectra)
to have finite energy. Finite energy means the function must get really small in that immense
space on the t-axis and the ω axis. It is impossible for a function to be small and its inverse
be small. These imponderables become manageable in the world of Time Series Analysis
(discretized time axis).

Uniqueness and invertability

Interesting questions arise when we are given a spectrum and find ourselves asking how to
find a filter that has that spectrum. Is the answer unique? We will see it is not unique. Is
there always an answer that is causal? Almost always, yes. Is there always an answer that
is causal with a causal inverse (CCI)? Almost always, yes.

Let us have an example. Consider a filter like the familiar time derivative (1,−1), except
let us down weight the −1 a tiny bit, say (1,−ρ) where 0 << ρ < 1. Now, the filter (1,−ρ)
has a spectrum (1 − ρZ)(1 − ρ/Z) with autocorrelation coefficients (−ρ, 1 + ρ2,−ρ) that
look a lot like a second derivative, but it is a tiny bit bigger in the middle. Two different
waveforms, (1,−ρ) and its time reverse both have the same autocorrelation. In principle,
spectral factorization could give us both (1,−ρ) and (ρ,−1), but we always want only the
one that is CCI, which is the one we get from Kolmogoroff. The bad one is weaker on its
first pulse. Its inverse is not causal. Following are two expressions for the filter inverse to
(ρ,−1), the first divergent (filter coefficients at infinite lag are infinitely strong), the second
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convergent but noncausal.

1
ρ− Z

=
1
ρ

(1 + Z/ρ+ Z2/ρ2 + · · · ) (16)

1
ρ− Z

=
−1
Z

(1 + ρ/Z + ρ2/Z2 + · · · ) (17)

(Please multiply each equation by ρ− Z, and see it reduce to 1 = 1.)

We begin with a power spectrum, and our goal is to find a CCI filter with that spectrum.
If we input to the filter an infinite sequence of random numbers (white noise), we should
output something with the original power spectrum.

We easily inverse Fourier transform the square root of the power spectrum, getting
a symmetrical time function, but we need a function that vanishes before τ = 0. On the
other hand, if we already had a causal filter with the correct spectrum we could manufacture
many others. To do so, all we need is a family of delay operators for convolution. A pure
delay filter does not change the spectrum of anything—same for frequency-dependent delay
operators. Here is an example of a frequency-dependent delay operator: First, convolve
with (1,2) and then deconvolve with (2,1). Both these have the same amplitude spectrum,
so the ratio has a unit amplitude (and nontrivial phase). If you multiply (1 + 2Z)/(2 +Z),
by its Fourier conjugate (replace Z by 1/Z) the resulting spectrum is 1 for all ω.

Anything with a nature to delay is death to CCI. The CCI has its energy as close as
possible to τ = 0. More formally, my first book, FGDP proves the CCI filter has for all
time τ more energy between t = 0 and t = τ than any other filter with the same spectrum.

Spectra can be factorized by an amazingly wide variety of techniques, each of which
gives you a different insight into this strange beast. Spectra can be factorized by factoring
polynomials, inserting power series into other power series, solving least squares problems,
and by taking logarithms and exponentials in the Fourier domain. I have coded most of of
these methods, and find each seemingly unrelated to the others.

Theorems in Fourier analysis can be interpreted physically in two different ways, one
as given, and the other with time and frequency reversed. For example, convolution in one
domain amounts to multiplication in the other. If we express the CCI concept with reversed
domains, instead of saying the “energy comes as quick as possible after τ = 0,” we would
say “the frequency function is as close to ω = 0 as possible.” In other words, it is minimally
wiggly with time. Most applications of spectral factorization begin with a spectrum, a
real, positive function of frequency. I once recognized the opposite case and achieved minor
fame by starting with a real, positive function of space, a total magnetic field

√
H2
x +H2

z

measured along the x-axis; and I reconstructed the magnetic field components Hx and Hz

that were minimally wiggly in space (FGDP, page 61).

Cholesky decomposition

Conceptually, the simplest computational method of spectral factorization might be “Cholesky
decomposition.” For example, the matrix of (15) could have been found by Cholesky fac-
torization of (14). The Cholesky algorithm takes a positive-definite matrix Q and factors
it into a triangular matrix times its transpose, say Q = TT T.



30

It is easy to reinvent the Cholesky factorization algorithm. To do so, simply write all
the components of a 3× 3 triangular matrix T and then explicitly multiply these elements
times the transpose matrix TT. You then find you have everything you need to recursively
build the elements of T from the elements of Q. Likewise, for a 4× 4 matrix, etc.

The 1 × 1 case shows that the Cholesky algorithm requires square roots. Matrix el-
ements are not always numbers. Sometimes, matrix elements are polynomials, such as
Z-transforms. To avoid square roots, there is a variation of the Cholesky method. In this
variation, we factor Q into Q = TTDT, where D is a diagonal matrix.

Once a matrix has been factored into upper and lower triangles, solving simultaneous
equations is simply a matter of two back substitutions: (We looked at a special case of back
substitution with Equation (??).) For example, we often encounter simultaneous equations
of the form BT Bm = BT d. Suppose the positive-definite matrix BT B has been factored
into triangle form TT Tm = BT d. To find m, first backsolve TT x = BT d for the vector
x. Then, we backsolve Tm = x. When T happens to be a band matrix, then the first back
substitution is filtering down a helix, and the second is filtering back up it. Polynomial
division is a special case of back substitution.

Poisson’s equation ∇2p = −q requires boundary conditions, that we can honor when we
filter starting from both ends. We cannot simply solve Poisson’s equation as an initial-value
problem. We could insert the Laplace operator into the polynomial division program, but
the solution would diverge.

Toeplitz methods

Band matrices are often called Toeplitz matrices. In the subject of Time Series Analy-
sis are found spectral factorization methods that require computations proportional to the
dimension of the matrix squared. These calculations can often be terminated early with
a reasonable partial result. Two Toeplitz methods, the Levinson method and the Burg
method, are described in my first textbook, FGDP. Our interest is multidimensional data
sets, so the matrices of interest are truely huge and the cost of Toeplitz methods is propor-
tional to the square of the matrix size. Thus, before we find Toeplitz methods especially
useful, we may need to find ways to take advantage of the sparsity of our filters.


