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ABSTRACT

Deconvolution mainly improves the resolution of seismic data by compressing
seismic wavelets, which is of great significance in high-resolution processing of
seismic data. Prediction-error filtering/least-square inverse filtering is widely
used in seismic deconvolution and usually assumes that seismic data is station-
ary. Affected by factors such as earth filtering, actual seismic wavelets are time-
and space-varying. Adaptive prediction-error filters are designed to effectively
characterize the nonstationarity of seismic data by using iterative methods, how-
ever, it leads to problems such as slow calculation speed and high memory cost
when dealing with large-scale data. We have proposed an adaptive deconvolution
method based on a streaming prediction-error filter. Instead of using slow iter-
ations, mathematical underdetermined problems with the new local smoothness
constraints are analytically solved to predict time-varying seismic wavelets. To
avoid the discontinuity of deconvolution results along the space axis, both time
and space constraints are used to implement multichannel adaptive deconvolu-
tion. Meanwhile, we define the parameter of the time-varying prediction step that
keeps the relative amplitude relationship among different reflections. The new
deconvolution improves the resolution along the time direction while reducing the
computational costs by a streaming computation, which is suitable for handling
nonstationary large-scale data. Synthetic model and filed data tests show that the
proposed method can effectively improve the resolution of nonstationary seismic
data, while maintaining the lateral continuity of seismic events. Furthermore, the
relative amplitude relationship of different reflections is reasonably preserved.

INTRODUCTION

Thin interbedded reservoirs and subtle reservoirs with complex lithology are becom-
ing key areas of seismic exploration and development. Conventional seismic data is
difficult to accurately characterize the thin reservoir, therefore, improvement of seis-
mic resolution is a persistent problem in seismic exploration. Two major categories
improving the vertical resolution of seismic data include deconvolution (ver der Baan,
2008, 2012; Margrave et al., 2011; Li et al., 2013) and inverse Q filtering (Wang, 2002,
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2006), and those techniques can effectively broaden the frequency bandwidth and im-
prove the accuracy of seismic data interpretation, especially in the identification of
thin reservoir. The inverse Q filtering method compensates the attenuation of wave
amplitude and fixes the phase distortion caused by the absorption of subsurface media;
however, the correction depends on the accuracy of the quality factor Q. Predictive
deconvolution method improves the resolution of seismic data by compressing seismic
wavelet, which depends on the assumptions of minimal phase wavelet and whitening
reflection coefficients. Thus, predictive deconvolution is suitable for vibroseis seismic
data (Ristow and Jurczyk, 1975).

Prediction-error filtering (PEF) or least-square inverse filtering has been applied
in seismic deconvolution for decades, and it has proved its effectiveness for resolu-
tion improvement and multiple elimination. The theory of predictive deconvolution
was introduced by Robinson (1957, 1967). Peacock and Treitel (1969) proved the
effectiveness of predictive deconvolution for enhancing resolution and suppressing pe-
riodic multiples. To take full advantage of the spatial characteristics of seismic data
and suppress noise, several authors developed multichannel predictive deconvolution
(Claerbout, 1992; Porsani and Ursin, 2007; Li et al., 2016). The traditional deconvo-
lution method is designed under the assumption of stationary data and becomes less
effective because seismic data are nonstationary in nature. Clark (1968) proposed a
nonstationary deconvolution in time domain based on optimal Wiener filtering. Wang
(1969) gave the criteria for determining the optimal length of the filtering window on
the assumption of a piecewise stationary. Griffiths et al. (1977) proposed an adap-
tive predictive deconvolution method that adaptively updates the filter coefficients
for each data point. Koehler and Taner (1985) proposed a generalized mathematical
theory of time-varying deconvolution and used the conjugate gradient algorithm to
calculate the filter coefficients. Prasad and Mahalanabis (1980) compared three adap-
tive deconvolution methods and demonstrated that all three methods perform better
than traditional predictive deconvolution when dealing with nonstationary data. Liu
and Fomel (2011) obtained smoothly nonstationary PEF coefficients by solving a
global regularized least-squared problem, however, iterative approach leads to slow
computation speed and high memory cost. Fomel and Claerbout (2016) proposed
the concept of streaming computation, which can adaptively update the filter coeffi-
cients without iteration, and the properties of nonstationary representation and low
computational cost are useful for the single-channel deconvolution model and random
noise attenuation of seismic data (Liu and Li, 2018). To improve the resolution effec-
tively for nonstationary seismic data, in this paper, we design a multichannel adaptive
deconvolution method based on the streaming prediction error filter in time-space do-
main. The time and space constraints added to the objective function can guarantee
the continuity of deconvolution results in space direction, and the relationship be-
tween the prediction step and wavelet frequency reasonably improve the fidelity of
the reflection coefficients in the deconvolution result.

This paper is organized as follows. First, we introduce the streaming computa-
tion for adaptive PEF. Then, we propose the improved streaming PEF method that
involves spatial constraints and time-varying prediction step. Finally, the synthetic
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data and real data are used to demonstrate that the proposed method can be effective
and efficient in vertical resolution improvement of nonstationary seismic data.

THEORY

According to the theory of predictive deconvolution, time-varying filter coefficients
are designed to predict nonstationary seismic data, which can be expressed as a
nonstationary autoregressive equation,

r(t) = s(t)−
N∑
n=1

cn(t)s(t− n+ 1− α) = s(t)− STC, (1)

where α is the prediction step, s(t) and r(t) are the original seismic data and pre-
diction error, respectively, ST = [s(t − α), s(t − 1 − α), · · · , s(t − N + 1 − α)]
, which represents the causal translation of s(t), all prediction coefficients C =
[c1(t), c2(t), · · · , cN(t)] are estimated in a time variant manner, and N denotes the
length of the predictive filter. The filter coefficients are obtained by solving the least-
squares problem:

min
C
‖ s(t)− STC ‖22, (2)

which is a classical underdetermined problem. The local smoothness constraints with
streaming computation (Fomel and Claerbout, 2016) avoids the problem of high com-
putational costs associated with iterative approaches. One can assume that the filter
coefficients corresponding to two adjacent data stay close, and the autoregressive
equation can be expressed by an overdetermined equation as


s(t− α) s(t− 1− α) · · · s(t−N + 1− α)

εt 0 · · · 0
0 εt · · · 0
...

...
. . .

...
0 0 · · · εt

×

c1(t)
c2(t)

...
cN(t)

 =


s(t)

εtc1(t− 1)
εtc2(t− 1)

...
εtcN(t− 1)

. (3)

Equation 3 can be written in terms of a shortened block-matrix notation

[
ST

εtI

]
C =

[
s(t)
εtCt

]
, (4)

where Ct = [c1(t − 1), c2(t − 1), · · · , cN(t − 1)], which represents the previous filter
coefficient on time axis, εt is the constant scale parameter controlling the variability of
two adjacent filter coefficients in the time axis, and I is the identity matrix. Consider a
multichannel seismic data, an extra spatial constraint can introduce to the smoothness
of the time-varying filter coefficients along the space axis. The new prediction filter
can be expressed in the form of a block matrix as
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STm
εtI
εxI

C =

sm(t)
εtCt

εxCx

 , (5)

where sm(t) and STm = [sm(t − α), sm(t − 1 − α), · · · , sm(t − N + 1 − α)] represent
the multichannel data with space index m and the causal translation of the mth
seismic trace, εx is the scalar regularization parameter in the space axis, and C =
[cm1 (t), cm2 (t), · · · , cmN(t)] is the time-varying filter coefficient with space-varying index
m. The previous filter Ct = [cm1 (t− 1), cm2 (t− 1), · · · , cmN(t− 1)] on the time axis and
the previous filter on space axis Cx = [cm−1

1 (t), cm−1
2 (t), · · · , cm−1

N (t)] are similar to
the current filter C = [cm1 (t), cm2 (t), · · · , cmN(t)].

Assuming that adjacent filter coefficients are similar, the current filter coefficients
at a certain point can be constrained by the adjacent filter coefficients in both time
and space directions, and the regularization constraint terms are ε2t ‖ C−Ct ‖22
and ε2x ‖ C−Cx ‖22. εt and εx are weights for regularization constraint terms along
time and space directions, respectively, which control the similarity of the adjacent
filter coefficients. In this case, the underdetermined problem is transformed into an
overdetermined problem. The filter coefficients are calculated by solving the regular-
ized autoregression problem

min
C
‖ sm(t)− STmC ‖22 +ε2t ‖ C−Ct ‖22 +ε2x ‖ C−Cx ‖22, (6)

the least-squares solution of equation 6 is

C = (SmSTm + ε2t I + ε2xI)−1(sm(t)Sm + ε2tCt + ε2xCx). (7)

The Sherman-Morrison formula in linear algebra (Hager, 1989) is able to directly
transform the inverse matrix in equation 7 without iterations:

(SmSTm + ε2t I + ε2xI)−1 =
1

ε2t + ε2x
(I− SmSTm

ε2t + ε2x + STmSm
), (8)

where Sm is a column vector and STm is the transpose of Sm. Substituting equation 8
into 7, the streaming PEF coefficients can be calculated as

C = C + (
sm(t)− STmC

ε2 + STmSm
)Sm, (9)

where {
ε2 = ε2t + ε2x

C =
ε2tCt+ε2xCx

ε2

. (10)

Equation 9 shows that the adaptive coefficients get updated by adding a scaled
version of the data, and the scale is proportional to the streaming prediction error.
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Updating the filter coefficients requires only elementary algebraic operation without
iteration.

According to the definition of prediction error (equation 1) and prediction coef-
ficients (equation 9), the deconvolution result of streaming PEF can be expressed
as

rm(t) = sm(t)− STmC =
ε2(sm(t)− STmC)

ε2 + STmSm
. (11)

In this paper, we select the minimum-phase wavelet as the source wavelet to verify
the effectiveness of the proposed deconvolution method. The minimum-phase wavelet
can be expressed as

w(t) = e−(2πfmt/25)2sin(2πfmt), (12)

where fm is the dominant frequency of the wavelet.

The minimum-phase wavelet (figure 1a) and the sequence of reflection coefficients
(figure 1b) generate a simple 1D convolution model (figure 1c) , where the wavelet
frequencies corresponding to every two reflection coefficients with opposite amplitude
are selected to be 45 Hz, 35 Hz, 25 Hz, and 20 Hz, respectively. Figure 1d is the
result by using the streaming PEF deconvolution (N = 10, εt = 0.2, and α = 1). The
streaming PEF deconvolution method effectively improve the time resolution, how-
ever, the relative amplitude relationship among different reflections has been changed,
which occur more in predictive deconvolution methods. Notice that the amplitude
distortion is related to the dominant frequency of the wavelet: the lower dominant
frequency is, the worse amplitude fidelity is shown because the peak amplitude of
minimum-phase wavelets is hard to happen in the first sample point.

(a) (b)

(c) (d)

Figure 1: Analysis of amplitude distortion for streaming PEFs. Minimum-phase
wavelet (a), the reflectivity (b), the nonstationary synthetic seismic trace (c), and the
deconvolution result by using streaming PEF with constant prediction step (d).

The red line in figure 2 represents the theoretical curve of sample number between
the start point and peak-amplitude point of minimum-phase wavelets, which is the
function of the dominant frequency. We select an empirical equation to fit the curve
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as follows:

gap = Round(
b

f ×∆t
), (13)

where Round represents a rounding function, gap is the sample number between the
start point and the peak-amplitude point, ∆t is the time interval, and b is a constant.
One can determine parameter b from any point in the curve, e.g., b is selected to be
0.232 in figure 2, where the dominant frequency is 1 Hz, the sample interval is 1 ms,
and the gap is 232. The blue dotted line calculated by equation 12 reasonably fits
the red theoretical curve. Therefore, we further design the streaming PEF deconvolu-
tion method with the time-varying prediction step to preserve the relative amplitude
relationship of different reflection coefficients. The adaptive prediction step is se-
lected to be the parameter gap, which makes the prediction error after deconvolution
close to the maximum amplitude value of the original wavelet. The new streaming
deconvolution residual is rewritten as follow:

r(t) = s(t)−
N∑
n=1

cn(t)s(t− n+ 1− α(t)), (14)

where α(t) is the time-varying prediction step, which is determined by a time-varying
gap value

α(t) = gap(t) = Round(
b

f(t)×∆t
), (15)

where f(t) is the time-varying local frequency obtained by the shaping regulariza-
tion (Fomel, 2007a). The instantaneous frequency calculated instantaneously at each
signal point sometimes appears noisy and contains physically unreasonable negative
frequency, so Fomel (2007a) defined the local frequency by using the shaping regular-
ization (Fomel, 2007b) to constrain the linear inversion problem. When calculating
the local frequency, the continuity and smoothness of the local frequency can be con-
trolled only by adjusting a smooth radius parameter, and the local frequency shows
better physical meaning than the instantaneous frequency.

Figure 2: Parameter gap curve of minimum phase wavelet with different frequencies.

Figure 3a shows the local frequency calculated from the synthetic trace (figure 1c),
and the time-varying prediction steps (figure 3b) are obtained according to equa-
tion 14, where the parameter b is 0.232 and the time interval is 1 ms. Figure 3c shows
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the result processed by the streaming PEF deconvolution with the time-varying pre-
dictionstep. Compared with original data (dotted line in figure 3c), the proposed
method keeps the relative amplitude relationship in the deconvolution result (solid
line in figure 3c) at the cost of a lower resolution improvement.

(a) (b)

(c)

Figure 3: The deconvolution result by using the streaming PEF with time-varying
prediction steps. The local frequency (a), time-varying prediction step (b), the de-
convolution result with the proposed method (solid line), which is compared with the
original trace (dotted line) (c).

The proposed method mainly includes four parameters: the filter length (N), time
constraint factor (εt), spatial constraint factor (εx) and constant b. According to the
experiment, a reasonable deconvolution results can be obtained when N ≤ 10. The
constraint factors εt and εx are the key parameters for the proposed method. The
denominator in equation 9 suggests that ε2t and ε2x should have the same order of the
magnitude as STmSm. Too small a constraint factor would make the deconvolution
results unstable, and too large a constraint factor would lead to the filter coefficients
not being updated effectively. When the filter coefficients are constrained only in the
time direction, it is only necessary to set the spatial constraint factor to zero (εx = 0).
In theory, the b value is the ratio of the peak-amplitude time to the period of the
wavelet. For minimum-phase wavelets, b is typically less than 0.25.

Like the traditional predictive deconvolution, the relative amplitude relationship
of the results that are generated by streaming PEF deconvolution with constant
prediction step is not consistent with the original data, so we introduce the time-
varying prediction step and derive its empirical formula. After adding the time-
varying prediction step, the amplitude of the deconvolution result of the synthetic
model (figure 3) tends to be consistent with the true amplitude of the original data.
However, the actual seismic data is complex due to the earth absorption attenuation
and other factors, so the amplitude of deconvolution results is not true amplitude,
but its relative amplitude relationship is closer to the original data.

Since the proposed method can adaptively update the filter coefficients without
iteration and characterize the nonstationary properties of the data, both the storage
and computational cost of the filters are less than those of the adaptive predictive
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filtering methods based on the iterative algorithms. Table 1 compares the storage
and computational cost of the different methods.

The proposed filter is constrained in both the time and space directions while
the filter is still one-dimensional, that is, the multichannel adaptive deconvolution
technology is based on the streaming PEF with one-dimensional structure and two-
dimensional constraints. To ensure the stability of the calculation, the first boundary
trace only uses the time constraint condition to compute the streaming PEF coeffi-
cients, and the constraints in both space and time directions are added to the other
trace. An extension of the proposed method to 3D is straightforward and provides a
fast adaptive multichannel deconvolution implementation for high-dimensional seis-
mic data.

Method Storage Cost
Stationary PEF O(Na) O(N2

aNt)
1D nonstationary PEF with iterative algorithm O(NaNt) O(NaNtNiter)
1D streaming PEF O(Na) O(NaNt)
2D streaming PEF O(NaNt) O(NaNtNx)

Table 1: Rough cost comparison among the different PEF estimation methods. Na is
the the filter size, Nt is the data length in the time direction, Nx is the data length
in the space direction, Niter is the number of iterations.

NUMERICAL EXAMPLES

1D attenuation model

We start with a 1D synthetic example with the quality factor Q attenuation according
to the modified Kolsky model (Wang and Guo, 2004; Wang, 2008). In this model,
the phase velocity is defined as

1

v(ω)
=

1

vr
(1− 1

πQr

ln

∣∣∣∣ ωωh
∣∣∣∣) ≈ 1

vr

∣∣∣∣ ωωh
∣∣∣∣−γ, (16)

where γ = 1
πQr

, Qr and vr are the quality factor and phase velocity at a reference

frequency ωr (the dominant frequency in genernal), ωh is the tuning frequency. We
generate a time-varying trace (figure 4b), where the dominant frequency of the unat-
tenuated minimum-phase wavelet is 40 Hz, the time interval is 1 ms, and the Q value
is 30. Figure 4a shows the actual reflectivity. For comparison, we use the traditional
predictive deconvolution to squeeze all wavelets (figure 5a), the filter length N is ten
and the prewhitening factor is 0.0001. The traditional method produces a reason-
able result at the high-frequency locations; however, the predictive deconvolution still
loses part of the original amplitudes. We design the streaming PEF deconvolution
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with a constant prediction step (N = 3, εt = 1.5, and α = 1) to further handle the
variability of wavelet (figure 5c). The streaming PEF residual visually shows a result
similar to the traditional method, however, a close-up comparison between the tra-
ditional deconvolution (figure 5b) and the proposed deconvolution (figure 5d) shows
an obvious resolution difference, which proves better nonstationary characteristics of
the streaming PEF.

Next, we improve the adaptive deconvolution result by involving the time-varying
prediction step, and the result is shown in figure 6. Figures 6a and 6b show the decay
of local frequency and the time-varying prediction step by using equation 14 where
b = 0.06, respectively. Figure 6c shows that the proposed method keeps the relative
amplitude relationship without auto gain correction (AGC) and the time resolution
is reasonably enhanced. Figure 6d shows amplitude spectrum of the synthetic data
before and after deconvolution, where the grey line is the original synthetic data and
the black line is the deconvolution result. It can be seen from figure 6d that the
amplitude spectrum broadens after the deconvolution.

(a) (b)

Figure 4: A synthetic seismic trace example. The reflectivity (a), synthetic trace with
Q attenuation (b).

(a) (b)

(c) (d)

Figure 5: Deconvolution results by using different methods. Traditional predictive
deconvolution (a), local display of (a) (b), streaming PEF deconvolution (c), local
display of figure (c) (d).
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(a) (b)

(c) (d)

Figure 6: Deconvolution by using streaming PEF with time-varying prediction steps.
Local frequency (a), time-varying prediction step (b), the deconvolution result with
the proposed method (solid line), which is compared with the original trace (dotted
line) (c), amplitude spectrum (The grey line is the original data, and the black line
is the deconvolution result) (d).

2D wedge model

The second example is shown in figure 7a. We use a 2D benchmark wedge model
to prove the necessity of the spatial constraint for the streaming PEF deconvolution.
The velocity of the wedge in the model is 10 kft/s, and the velocity of the upper
and lower media is 20 kft/s, therefore, the wave impedance corresponding to the top
and bottom interfaces of the wedge are reversed. The minimum-phase wavelet with
the dominant frequency of 30 Hz is selected to create the synthetic data (figure 7b),
where the wavelet of the top and bottom interfaces appears interference started from
the 45th trace. The synthetic data are firstly processed using the traditional predic-
tive deconvolution method (the filter length is 3) and the regularizednon-stationary
autoregressive (RNA) method (the filter length is 3) based on the iterative algorithm
(Liu and Fomel, 2011), and the deconvolution results are shown in figures 7c and
7d, respectively. Due to the model is stationary data, both methods can effectively
improve the resolution and distinguish the top and bottom interfaces of the wedge
model, but the traditional predictive deconvolution method is not suitable for pro-
cessing nonstationary data (see figure 5) and iterative RNA deconvolution produces
high computational cost. Then we design a streaming PEF with 3 (time) coefficients,
the prediction step α = 1, and the time constraint factor εt = 0.2 for each sample
to further verify the effectiveness of the spatial constraint. Figures 7e and 7f show
the streaming PEF deconvolution results without spatial constraint (εx = 0) and
with spatial constraint (εx = 0.5), respectively. Both single-channel and multichan-
nel deconvolution improve the vertical resolution, however, the result without spatial
constraint appears with unstable fluctuation and spatial discontinuity, especially at
rectangle location in figure 7e. The spatial constraint can effectively reduce the fluc-
tuation and enhance the structural continuity of deconvolution result. Meanwhile,
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the computation time of the traditional method, iterative method, single-channel,
and multichannel streaming PEF deconvolution method is 0.011 s, 0.220 s, 0.011 s,
and 0.012 s, respectively.

Field example

For the field data test, we use a 2D poststack section with time interval of 2 ms.
The input is shown in figure 8a. For comparison, we apply the traditional predictive
deconvolution (the filter length is 6) and the iterative method (the filter length is
6) to enhance the time resolution, as shown in figures 8b and 8c. Figure 8d shows
a processing result using the proposed streaming PEF deconvolution method. The
streaming PEF parameters are 6 (N), 0.032 (b), 25000 (εt), and 10000 (εx). The
computation time of traditional, iterative method, and streaming PEF deconvolu-
tion methods are 0.024 s, 18.767 s, and 1.018 s, respectively, however, the traditional
deconvolution method cannot enhance the time resolution at all time because of non-
stationary of the field data. The proposed deconvolution and iterative methods can
improve the vertical resolution at different times, so both methods are more suit-
able for processing nonstationary data. Moreover, compared with the traditional and
iterative methods, the proposed method can better keep the continuity of events.
Furthermore, we select a part of the data near to the reservoir layer from 3-3.5 s to
calculate the average amplitude spectrum of the data before and after deconvolution,
as shown in figure 9. Figure 9 confirms that the average amplitude spectrum of the
seismic section after being processed by the streaming PEF deconvolution is broader
than that of the traditional deconvolution result and slightly narrower than that of
the iterative deconvolution result in the effective frequency range. However, according
to the computation time of the different deconvolution methods, the computational
efficiency of the proposed method is significantly improved compared with the itera-
tive method. It further verifies the effectiveness and high efficiency of the streaming
PEF deconvolution method in processing nonstationary seismic data.

CONCLUSION

We have improved the theory of streaming PEF with temporal and spatial constraints
and proposed a multichannel adaptive deconvolution based on streaming PEF in the
time-space domain. Our approach uses a time-varying prediction step to guarantees
the reasonable amplitude relationship of deconvolution results. The proposed method
updates the filter coefficients simultaneously when each new data point arrives, which
effectively represents the nonstationary characteristics of the seismic data. The effi-
cient computational feature of streaming computation is useful for efficient adaptive
deconvolution in high-dimensional data processing. Synthetic examples and field data
test confirm that the proposed deconvolution method is successful in enhancing the
temporal resolution of seismic data while preserving the relative amplitude relation-
ship and structural continuity.
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Wedge model. Wedge velocity model (a), synthetic data (b), the result
of traditional predictive deconvolution (c), the result of iterative deconvolution (d),
the result of adaptive single-channel deconvolution without spatial constraint (e), the
result of adaptive multichannel deconvolution with patial constraint (f).
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(a) (b)

(c) (d)

Figure 8: Deconvolution results by using different methods. Poststack field data (a),
traditional predictive deconvolution (b), iterative deconvolution (c), streaming PEF
deconvolution (d).
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(a) (b)

(c) (d)

Figure 9: Comparison of the average amplitude spectrum of the deconvolution results
and original field data. Original field data (a), traditional predictive deconvolution
(b), iterative deconvolution (c), streaming PEF deconvolution (d).
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