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ABSTRACT

I present a layer-stripping Kirchhoff migration algorithm which is capable of ob-
taining accurate images of complex structures by downward continuing the data
and imaging from a lower datum. I use eikonal traveltimes in a Kirchhoff da-
tuming algorithm for the downward continuation. After downward continuation,
I perform Kirchhoff migration. The method alternates steps of datuming and
imaging. Because traveltimes are computed for each step, the adverse effects
of caustics, headwaves, and multiple arrivals do not develop. In principal, this
method only requires the same number of traveltime calculations as a standard
migration. Tests on the Marmousi data set produce excellent results.

INTRODUCTION

Kirchhoff migration is generally accepted to be the most efficient method of imaging
2-D and 3-D prestack seismic data. The Marmousi synthetic data set (Versteeg,
1994) has been a popular testbed for migration algorithms and many researchers
have discovered that Kirchhoff algorithms using first-arrival traveltimes do a poor job
of imaging the target zone (Audebert et al., 1994; Gray and May, 1994; Geoltrain
and Brac, 1993). Even methods which calculate most energetic arrivals and estimate
amplitude and phase do not always result in images which compare favorably with
finite-difference shot-profile migration.

In their 1993 Geophysics article, Geoltrain and Brac ask the question “Can we
image complex structures with first-arrival traveltime?” They conclude that they
cannot, and that they should either ray trace to find the most energetic arrivals, or
calculate multiple-arrival Green’s functions. Nichols (1994) calculates band-limited
Green’s functions to estimate the most energetic arrivals. He estimates not only
traveltime, but also amplitude and phase. My approach is simpler; by breaking
up the complex velocity structure, I am able to calculate traveltimes in velocity
models where finite-differencing the eikonal equation is valid. This results in images
comparable to those obtained by Nichols’ method and by shot-profile migration at a
reduced computational cost.
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Like most of the other researchers in the field, I test my method on the ever-
popular Marmousi synthetic.

TRAVELTIME CALCULATION

Green’s functions based on first-arrival traveltime calculation methods result in poor
images in structurally complex areas. Several reasons have been given for this failure:

• The high-frequency approximation of ray and eikonal methods breaks down in
complex velocity models. In rapidly varying velocity models, different frequency
components of the wavefield propagate at different velocities, so summation
trajectories based on only the high-frequency components may not capture the
desired events.

• When high velocity zones are present, the first-arrivals may be non-energetic
headwaves.

• As energy propagates in complex models, raypaths tend to eventually cross.
This causes phase shifts and triplications. First-arrival traveltimes follow the
fastest branch of the triplication bow-tie, which is also the low energy branch.

Complexity of velocity models and validity of high-frequency approximations can
be defined in various ways. The larger the velocity model, the more variation there
will tend to be and the more opportunity there will be for things to go wrong: There
will be more opportunity for frequency components to separate, for headwaves to
develop, and for triplications to occur.

The Marmousi velocity model (Figure 1) results in complex propagation paths
where late energetic arrivals are not fit well by first-arrival finite-difference travel-
times. In Figure 2, an acoustic modeling program was used to generate snapshots of
the wavefield from two surface source locations in the Marmousi model. The corre-
sponding contours of finite-difference traveltime at 1.05 s have been overlain. Clearly,
the finite-difference traveltime contours do not always correspond to energetic por-
tions of the wavefield. If these traveltimes were used for migration, the resulting
image would suffer because parts of the summation trajectories would not correspond
to energetic arrivals. By contrast, snapshots for the same source locations at an ear-
lier time of 0.6 s (Figures 3a and 3b) show that the finite-difference traveltime curves
overlay the high energy portions of the wavefields nicely. This is because there has
not been enough time for adverse propagation effects to fully develop. Figures 3c and
3d are generated by starting the acoustic modeling and the finite-difference travel-
time calculation from a depth of 1500 m. The 0.3 s contours correspond nicely to the
high energy portions of the wavefields. There is some deviation in the shallow part of
Figure 3c, but for the most part the finite-difference traveltime contour fits the bulk
of the acoustic energy pretty well. Overall, the contours in Figure 3 have not pulled
away from the wavefield as they have in Figure 2.
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Figure 1: The Marmousi velocity model.

Figure 2: The result of acoustic wavefield modeling for the Marmousi model overlain
by contours of finite-difference traveltime. Snapshots (a) and (b) are taken at a time
of 1.05 s for two different source locations.
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Figure 3: The result of acoustic wavefield modeling for the Marmousi model overlain
by contours of finite-difference traveltime. Snapshots (a) and (b) are taken at a time
of 0.6 s for the same two source locations depicted in Figure 2. Snapshots (c) and (d)
are taken at a time of 0.3 s with sources at a depth of 1500 m and the same lateral
positions as in (a) and (b).
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These properties of first-arrival traveltimes, and the observation that Kirchhoff
migration using first-arrival traveltimes usually produces an acceptable image of the
upper 1500 m of the Marmousi synthetic, motivated the development of the layer-
striping method described here.

Throughout this study, I use a finite difference solution to the eikonal equation to
generate traveltimes (van Trier and Symes, 1991). I use my Kirchhoff datuming algo-
rithm (Bevc, 1993), and an industry standard Kirchhoff migration code to generate
the results.

LAYER-STRIPPING KIRCHHOFF MIGRATION

The layer-stripping migration method can be thought of as a hybrid algorithm that
incorporates some of the advantages of shot-profile migration with the efficiency of
Kirchhoff migration. This is illustrated by Figures 4 through 6.

In shot-profile migration, shots and geophones are alternately downward continued
through each depth level. Figure 4 illustrates this for one line of shots or geophones.
It is evident that there are many propagation paths from the surface to the image
point, therefore multiple arrivals are handled. The computation is performed for all
frequencies.

By contrast, first-arrival Kirchhoff migration is performed by summing data over
trajectories defined by the propagation paths illustrated in Figure 5. There is only
one path linking each surface position to the image point, therefore multiple arrivals
are not handled. Although crossing paths are not illustrated here, they can occur.

The layer-stripping method is illustrated in Figure 6. It is a combination of
Kirchhoff wave-equation datuming (Berryhill, 1979, 1984) and Kirchhoff migration.
The computation proceeds as follows:

1. Migrate from surface to some depth level z1.

2. Downward continue to depth level z1.

3. Migrate from depth level z1.

4. Downward continue to depth level z2.

5. Migrate from depth level z2.

6. etc...

The depth step of downward continuation is much larger than the 4z used in shot-
profile migration. Since there are multiple paths from the surface to the image point,
multiple arrivals are handled. Because the paths are shorter than in Figure 5, first-
arrival traveltimes are more likely to be valid.
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Figure 4: Propagation paths from
the surface to an image point for
shot profile migration.
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Figure 5: Propagation paths from
the surface to an image point for
Kirchhoff downward continuation.
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Figure 6: Propagation paths from
the surface to a depth point for
layer-stripping Kirchhoff down-
ward continuation.
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MARMOUSI EXAMPLE

Figure 7 is the result of an industry standard Kirchhoff migration of the Marmousi
synthetic using eikonal traveltimes. The upper portion is well imaged; however, the
anticlinal structure below 2200 m and the target zone at a lateral position of about
6500 m and depth of 2500 m is not imaged.

Figure 8 is generated by downward continuing the data to a depth of 1500 m in
one datuming step. The downward continued data are then migrated and combined
with the previous image of the upper 2000 m. The anticlinal structure and the target
are now clearly imaged.

Continuing the data to 1500 m in three steps of 500 m each, results in an even
crisper image of the anticline and the target (Figure 9). In both of these images,
the events which unconformably define the top of the anticline, the anticline events
themselves, and the target events, are clearly imaged.

Figure 7: Standard Kirchhoff migration using eikonal traveltimes.

In Figure 10, I compare the images in the vicinity of the target zone to the velocity
model and a filtered reflectivity model which represents the desired image. Both im-
ages compare favorably to the desired reflectivity. The image obtained by downward
continuing the data in three steps of 500 m is superior since the events display better
lateral continuity and the image is clearer. This is because the traveltimes calcu-
lated for each of the 500 m steps are simpler and better behaved than the traveltimes
calculated for one step of 1500 m.
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Figure 8: Migrated image using traveltimes calculated from the surface, and travel-
times calculated from a depth of 1500 m. The lower part of the image was obtained by
migrating data which was redatumed to a depth of 1500 m in one step of downward
continuation.

Figure 9: Migrated image using traveltimes calculated from the surface, and travel-
times calculated from a depth of 1500 m. The lower part of the image was obtained
by migrating data which was redatumed to a depth of 1500 m in three steps of 500
m each.
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Figure 10: Comparison of the velocity, the reflectivity, and the images in the target
zone.
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CONCLUSION

I obtain images comparable to shot-profile migration results by combining wave-
equation datuming and Kirchhoff migration into a layer-stripping migration method.
In this case, eikonal traveltimes produce satisfactory images because the velocity
model is subdivided and traveltimes are calculated under conditions where finite-
differencing the eikonal equation is valid. By dividing the imaging problem in this
way, the traveltimes are better behaved and some multiple arrivals are accounted for.
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