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ABSTRACT

We use least-squares migration to emphasize edge diffractions. The inverted
forward modeling operator is the chain of three operators: Kirchhoff model-
ing, azimuthal plane-wave destruction and path-summation integral filter. Az-
imuthal plane-wave destruction removes reflected energy without damaging edge
diffraction signatures. Path-summation integral guides the inversion towards
probable diffraction locations. We combine sparsity constraints and anisotropic
smoothing in the form of shaping regularization to highlight edge diffractions.
Anisotropic smoothing enforces continuity along edges. Sparsity constraints em-
phasize diffractions perpendicular to edges and have a denoising effect. Synthetic
and field data examples illustrate the effectiveness of the proposed approach in
denoising and highlighting edge diffractions, such as channel edges and faults.

INTRODUCTION

Diffraction imaging is able to highlight subsurface discontinuities associated with
channel edges, fracture swarms and faults. Since diffractions are usually weaker than
reflections (Klem-Musatov, 1994) and have lower signal-to-noise ratio, robust diffrac-
tion extraction is of utmost importance for the imaging of subtle discontinuities. A
number of diffraction imaging methods have been developed and can be classified
based on the separation technique being employed. Methods based on optimal stack-
ing of diffracted energy and suppression of reflections are described by Kanasewich
and Phadke (1988), Landa and Keydar (1998), Berkovitch et al. (2009), Dell and
Gajewski (2011), Tsingas et al. (2011) and Rad et al. (2014). Wavefield separation
methods aim to decompose conventional full-wavefield seismic records into differ-
ent components representing reflections and diffractions (Papziner and Nick, 1998;
Taner et al., 2006; Fomel et al., 2007; Schwarz and Gajewski, 2017; Schwarz, 2019;
Dell et al., 2019b). Decomposition can be carried out in the common-image gather
domain (Reshef and Landa, 2009; Klokov and Fomel, 2012; Silvestrov et al., 2015).
Other authors (Kozlov et al., 2004; Moser and Howard, 2008; Koren and Ravve, 2011;
Klokov and Fomel, 2013; Popovici et al., 2015) modify migration kernel to eliminate
specular energy coming from the first Fresnel zone and image diffractions only. For
the methods involving migration, diffraction extraction quality becomes dependent
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on the velocity model accuracy. Numerous case studies show that diffraction images
carry valuable additional information for seismic interpretation (Schoepp et al., 2015;
Burnett et al., 2015; Sturzu et al., 2015; Tyiasning et al., 2016; Klokov et al., 2017a,b;
Merzlikin et al., 2017b; de Ribet et al., 2017; Pelissier et al., 2017; Koltanovsky et al.,
2017; Zelewski et al., 2017; Foss et al., 2018; Glöckner et al., 2019; Moser et al., 2020;
Montazeri et al., 2020).

Consideration of diffraction phenomena in 3D (Keller, 1962; Klem-Musatov et al.,
2008; Hoeber et al., 2010) requires taking into account edge diffractions. Due to lat-
eral symmetry they kinematically behave as reflections when observed along the edge
and as diffractions when observed perpendicular to the edge (Moser, 2011). Thus,
edge diffraction signature is neither a “pure” reflection nor a “pure” diffraction but
rather a combination of both and therefore requires a special processing procedure
to be emphasized. Serfaty et al. (2017) separate reflections, tip and edge diffrac-
tions and noise using principal component analysis and deep learning. Klokov et al.
(2011) and Bona and Pevzner (2015) investigate 3D signatures of different types of
diffractors. Alonaizi et al. (2013) and Merzlikin et al. (2017a) propose workflows to
properly process energy diffracted on the edge. Keydar and Landa (2019) propose a
method for edge diffraction imaging based on time-reversal principle and the stacking
operator directly targeting edge diffractions. Dell et al. (2019a) extract edge diffrac-
tion responses from full wavefield data by analyzing amplitude distribution along
different azimuths on a 3D prestack time Kirchhoff migration stacking surface. Znak
et al. (2019) develop a common-reflection-surface-based framework for distinguishing
between point and edge diffractions and separating them from reflections.

Separation of reflections and diffractions can be done as a part of least-squares
migration (Nemeth et al., 1999; Ronen and Liner, 2000). Harlan et al. (1984) pioneer
in separating diffractions from noise by comparing observed data and data modeled
from a migration image in a least-squares sense. Merzlikin and Fomel (2016) perform
least-squares migration chained with plane-wave destruction and path-summation in-
tegral filtering and enforce sparsity in a diffraction model. Merzlikin et al. (2019)
extend the approach and simultaneously decompose the input wavefield into reflec-
tions, diffractions and noise. Decker et al. (2017) denoise diffractions by applying
semblance-based weights estimated in dip-angle gather (DAG) domain. Yu et al.
(2016) utilize common-offset Kirchhoff least-squares migration with a sparse model
regularization to emphasize diffractions. Yu et al. (2017a) extract diffractions based
on plane wave destruction and dictionary learning for sparse representation. Yu et al.
(2017b) use two separate modeling operators for diffractions and reflections and im-
pose a sparsity constraint on diffractions. Sparse inversion is an efficient tool to
perform extraction and denoising of diffractions since scatterers have spiky and in-
termittent distribution. However, a simple sparsity constraint does not account for
the signature of the energy scattered on the edge, which is kinematically similar to a
reflection when observed along the edge, and thus can distort it.

We combine sparsity constraints and structure-oriented smoothing in the form of
shaping regularization (Fomel, 2007) to highlight edge diffractions and account for



Merzlikin et al. 3Anisotropic Smoothing Diffraction Imaging

their signature. Structure-oriented smoothing performs smoothing along the edges
emphasizing their continuity (Hale, 2009). Sparsity constraints imposed by thresh-
olding in the model space force the model to describe the data with the fewest pa-
rameters and therefore denoise and emphasize edge diffraction signatures observed
perpendicular to the edge. Thus, we properly account for edge diffraction kinematic
behavior for both parallel and perpendicular to the edge directions.

For forward modeling we use a chain of operators introduced by Merzlikin and
Fomel (2016). We extend this workflow to three-dimensions and modify reflection
destruction operator to account for an edge diffraction signature by suppressing re-
flected energy perpendicular to edges. Edge orientations are determined through a
plane-wave destruction based structure tensor (Merzlikin et al., 2017a). We start
with a method introduction, then validate its performance on a synthetic, on a noisy
marine field dataset and on a land field dataset by separating edge diffractions from
reflections and noise.

METHOD

Objective function

To solve for a seismic diffraction image md, we extend the approach developed by
Merzlikin and Fomel (2016) to three dimensions:

J(md) = ‖dPI −PDLmd‖22, (1)

where J(md) is the objective function, dPI = PDd and d is “observed” data. Here,
forward modeling corresponds to the chain of operators: three-dimensional path-
summation integral filter P (Merzlikin and Fomel, 2015, 2017), azimuthal plane wave
destruction (AzPWD) filter D (Merzlikin et al., 2016, 2017b) and three-dimensional
Kirchhoff modeling L. The path-summation integral filter P can be treated as the
probability of a diffraction at a certain location. Azimuthal plane wave destruction
filter D removes reflected energy perpendicular to the edges. Therefore, AzPWD
emphasizes edge diffraction signature, which when measured in the direction perpen-
dicular to the edge exhibits a hyperbolic moveout and kinematically behaves as a
reflection when observed along the edge. AzPWD application is the key distinction
from the 2D version of the workflow (Merzlikin and Fomel, 2016), in which plane-
wave destruction filter (PWD) (Fomel, 2002) is applied along the time-distance plane
(Fomel et al., 2007; Merzlikin et al., 2018). After weighting the data dPI = PDd
by path-summation integral P and AzPWD filter D, model fitting is constrained to
most probable diffraction locations.
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Determination of edge diffraction orientation

For AzPWD workflow Merzlikin et al. (2016, 2017b) show that a volume with plane-
wave destruction filter applied in arbitrary direction x′ corresponding to the azimuth θ
can be generated as a linear combination of PWDs applied in inline (Dx) and crossline
(Dy) directions: Dx′ = Dx cosθ + Dy sinθ. Due to migration procedure linearity the
same relationship holds for the images of the corresponding PWD volumes. Azimuth
θ should be perpendicular to the edge at each location to remove reflections but
preserve edge diffraction signatures, which are kinematically similar to reflections
when observed along the edge.

This azimuth can be determined from the structure tensor (Van Vliet and Verbeek,
1995; Weickert, 1997; Fehmers and Höcker, 2003; Hale, 2009; Wu, 2017; Wu and Jan-
son, 2017), which is defined as an outer product of migrated plane-wave destruction
filter volumes in inline and crossline directions (Merzlikin et al., 2016, 2017b):

S =

[〈pxpx〉 〈pxpy〉
〈pxpy〉 〈pypy〉

]
, (2)

where 〈〉 denotes smoothing of structure-tensor components, which is done in the edge-
preserving fashion (Liu et al., 2010). Smoothing stabilizes structure-tensor orientation
determination in the presence of noise (Weickert, 1997; Fehmers and Höcker, 2003),
while edge-preservation keeps information related to geologic discontinuities, which
otherwise would be lost due to smearing. Here, px and py are the samples of inline
and crossline migrated PWD volumes (Px and Py) at each location. PWD filter can
be treated as a derivative along the dominant local slope (Fomel, 2002; Fomel et al.,
2007). Thus, a 2D PWD-based structure tensor (equation 2) effectively represents
3D structures without the need for the third dimension because the orientations are
determined along the horizons.

Edge orientation can be determined by an eigendecomposition of a structure tensor
(Fehmers and Höcker, 2003; Hale, 2009): S = λuuuT + λvvvT . If a linear feature
(edge) is encountered eigenvector u corresponding to a larger eigenvalue λu points
in the direction perpendicular to the edge. Eigenvector v of a smaller eigenvalue λv
points along the edge. Thus, azimuth θ of a direction x′ perpendicular to the edge
can be computed from either u or v. If no linear features are observed, there is no
preferred PWD direction.

The PWD-based tensor (equation 2) describes 3D structures. Its components (px
and py) are computed along the “structural frame” defined by the reflecting horizons.
Thus, vectors u and v “span” the surfaces, which at each point are determined by
dominant local slopes. Eigenvectors of a PWD-based structure tensor (equation 2)
are parallel to a reflection surface at each point.
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Regularization

We use shaping regularization to constrain the model (Fomel, 2007). We penalize edge
diffractions by two shaping operators: thresholding and smoothing by anisotropic
diffusion. Iterative application of the first operator forces the model to describe
the data with the fewest parameters possible (Daubechies et al., 2004) and therefore
denoises and emphasizes edge diffraction signatures in the direction perpendicular to
the edge. The second operator emphasizes the signatures of edge diffractions along
the edge by enforcing their continuity.

Smoothing based on anisotropic diffusion enhances flow-like structures and com-
pletes interrupted lines (Weickert, 1998). The input is an unfiltered image, smooth-
ness of which is increasing while diffusion is proceeding in time (Fehmers and Höcker,
2003). In a discrete form anisotropic diffusion can be formulated as follows:

Uk −Uk−1

∆t
= −DT

im V VT Dim Uk , (3)

where Uk is an image at a diffusion time step k with ∆t sampling interval, Dim is
a matrix operator combining PWDs in inline and crossline directions in the image
domain and V is a matrix of eigenvectors v, which are parallel to linear features’
orientations along the dominant local slopes. Classic anisotropic diffusion partial dif-
ferential equation (Weickert, 1998) requires three-dimensional structure tensor and
gradient. In equation 3, we utilize PWD-based structure tensor instead of its three-
dimensional counterpart based on derivatives along the coordinate axes and a com-
bination of PWDs in inline and crossline directions in the image domain instead of a
three-dimensional gradient. After terms rearrangement, equation 3 takes the form of
a linear least-squares solution with forward modeling operator corresponding to the
identity matrix:

Uk =
(
I + ε2 DT

im V VT Dim

)−1
Uk−1 , (4)

where ε corresponds to the time step ∆t. At diffusion time step k we update the pre-
vious image Uk−1 with N conjugate gradients iterations until the desired smoothness
is achieved in the output image Uk. Total number of diffusion time steps K, number
of conjugate gradients iterations N and parameter ε control the smoothness of the
final result.

Figure 1 shows anisotropic smoothing operator action on a zigzag pattern contam-
inated with Gaussian noise. Isotropic smoothing operator (see, e.g., Weickert (1998)
for details) action is equal for all the directions and thus results in sharpness loss
incurred by smoothing across the edges (Figure 1c). Figure 1d shows that anisotropic
smoothing operator (equation 4) preserves edges by smoothing along them and thus
results in both S/N ratio enhancement and sharpness of the image.

Flow-like coherent noise patterns in Figure 1d are induced by using “true” az-
imuths of edges across the whole image including both signal and noise regions.
The result of combining both regularization operators - thresholding and anisotropic
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smoothing - is shown in Figure 1f: noise and flow-like artifacts are suppressed in re-
gions with no signal. Thus, the combination of thresholding and anisotropic smooth-
ing is required for proper edge diffraction regularization.

In the following examples, edge orientation estimation is done for each location
individually based on a structure tensor.

(a) (b) (c)

(d) (e) (f)

Figure 1: Zigzag pattern: (a) with no noise; (b) with Gaussian noise added; (c) cor-
responds to (b) processed by isotropic smoothing operator (notice smoothing across
the edges); (d) corresponds to (b) processed by anisotropic smoothing operator (edges
are highlighted and preserved). Flow-like coherent noise patterns in (d) are induced
by using “true” azimuths of edges across the whole image including both signal and
noise regions. Thresholding operator action on (b) is shown in (e). The result of
combining both regularization operators - anisotropic smoothing and thresholding -
is shown in (f). Noise including flow-like artifacts is attenuated.

Optimization

For inversion we adopt a conjugate gradients scheme (Fomel et al., 2007):

mi
d ← Hε,N,KTλ

[
mj

d + αjsj
]
, sj = −∇J(mj

d) + βjsj−1 (5)

where Hε,N,K and Tλ are anisotropic-smoothing and thresholding operators, −∇J(mj
d)

is the gradient at iteration j, sj is a conjugate direction, αj is an update step length
, and βj is designed to guarantee that sj and sj−1 are conjugate. After several in-
ternal iterations j of the conjugate gradient algorithm we generate mj

d, to which we
apply thresholding to drop samples corresponding to noise with values lower than the
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threshold λ, and which we then smooth along edges by applying anisotropic smooth-
ing operator Hε,N,K . Outer model shaping iterations are denoted by i.

Inversion results also depend on the numbers of inner and outer iterations: their
tradeoff determines how often shaping regularization is applied and therefore controls
its strength. Regularization by early stopping can also be conducted. The optimiza-
tion strategy with Hε,N,K removed corresponds to the iterative thresholding approach
(Daubechies et al., 2004).

Workflow

The workflow takes stacked data as the input. To generate all the inputs necessary
for the inversion we propose the following sequence of procedures:

1. estimate inline and crossline dips describing dominant local slopes associated
with reflections in the stack;

2. perform PWD filtering on the stack in inline and crossline directions;

3. migrate the corresponding volumes;

4. combine the migrated volumes in a structure tensor (equation 2);

5. smooth structure tensor components along structures with edge preservation;

6. perform eigendecomposition of a structure tensor and determine orientations of
edges;

7. apply AzPWD and path-summation integral to the stacked data;

8. apply conventional full-wavefield migration to the dataset stack (same as the
input to step 1); estimate dips and generate PWD volumes in the inline and in
the crossline directions in the image domain (Dim in equation 3) for anisotropic
smoothing regularization.

The sequence of procedures with their corresponding inputs and outputs is shown
in Figure 2. In the first step, dips are estimated using PWD (Fomel et al., 2007), and
two volumes - one for the inline dips and one for the crossline dips - are produced
and further used for reflection removal in step 2. In the second step, based on the
two input dip volumes, reflections are predicted and suppressed: two outputs are
generated, which correspond to PWD filter application in the inline (Dx) and in
the crossline (Dy) directions using the corresponding dip distributions. These two
volumes with reflections removed are then migrated (step 3) using conventional full-
wavefield migration, e.g. 3D post-stack Kirchhoff migration. For step 4, instead of
explicitly computing structure tensor for each data sample according to equation 2,
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volumes for each of its components can be pre-computed. The term pxpx structure-
tensor component volume can be generated by the Hadamard product between the
migrated inline PWD volume (Px) and itself, the pypy-component volume - by the
Hadamard product between the migrated crossline PWD volume (Py) and itself,
and the pxpy-component volume - by the Hadamard product between the migrated
inline PWD volume (Px) and the migrated crossline PWD volume (Py). Then, in
step 5, the pxpx, pypy, and pxpy structure-tensor component volumes are input to
edge preserving smoothing, which outputs the 〈pxpx〉, 〈pypy〉, and 〈pypy〉 volumes. In
step 6, structure tensor (equation 2) eigendecomposition is performed “on the fly”
by combining structure tensor component values from the 〈pxpx〉, 〈pypy〉, and 〈pypy〉
volumes for each data sample. The result is the smaller eigenvalue eigenvector volume,
which is then converted to edge diffraction orientations Θ. Step 7 gives the data to
be fit by the inversion (equation 1). Orientations of structures for AzPWD and for
anisotropic smoothing regularization are estimated in step 6. In anisotropic diffusion
instead of derivatives in Cartesian coordinates we use PWDs in inline and crossline
directions in the image domain (Dim in equation 3), dip estimation for which should
be performed on a “conventional” image of a full wavefield stack (step 8). Then, we
invert the data for edge diffractions.

SYNTHETIC DATA EXAMPLE

We test the approach on a synthetic data example with a reflectivity model is shown
in Figure 3. The synthetic seismic data are generated by Kirchhoff modeling method
with 15 Hz peak-frequency Ricker wavelet, reflectivity distribution shown in Figure 3
and 2.0 km/s constant velocity model, which is further utilized in both migration
and inversion. Zero-offset geometry with 1 m sampling in both inline and crossline
directions is used. The synthetic data are shown in Figure 4a. Random noise with a
maximum amplitude of 30% of that of the signal, filtered to the signal frequency band
is added to the synthetic. After 3D Kirchhoff migration diffractions become focused
and a channel-like structure with a zigzag pattern becomes prominent (Figure 4b).
However, channel edges appear to be somewhat blurred and masked by the reflections.
We follow the workflow described above. Data to be fit by the inversion is shown in
Figure 5a. We use the following parameters for the inversion: λ = 100, ε = 10, N = 5
and K = 1. In total we use 20 iterations - 5 inner by 4 outer. The inversion result is
shown in Figure 5b. Edges are highlighted and denoised.

FIELD DATA EXAMPLE I

We test the capabilities of the proposed approach on the field dataset acquired with a
high-resolution 3D (HR3D) marine seismic acquisition system (P-cable) in the Gulf of
Mexico to characterize structure and stratigraphy of the shallow subsurface (Meckel
and Mulcahy, 2016; Klokov et al., 2017b; Merzlikin et al., 2017b; Greer and Fomel,
2018). The acquisition geometry is defined by a ‘cross cable’ of a catenary shape
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Figure 2: Workflow chart illustrating the sequence of procedures and the relation
of their corresponding inputs and outputs. Here, Dx and Dy correspond to inline
and crossline PWD volumes of the input stack, Px and Py correspond to inline and
crossline PWD volumes after migration, � corresponds to the Hadamard (element-
wise) matrix product, 〈〉 corresponds to the edge-preserved smoothing, Θ corresponds
to the volume of edge diffraction azimuths, PDL corresponds to the forward mod-
eling operator corresponding to the chain of path-summation integral, AzPWD and
Kirchhoff modeling operators respectively; dPI = PDd, where d corresponds to the
input stack; and Hε and Tλ are anisotropic-smoothing and thresholding operators.
The term md is the edge diffractivity we invert for: mj

d describes model updates from
internal iterations minimizing the misfit, and mi

d is the result of regularization applied
during external iterations. Notice in step 8, inline and crossline PWDs are computed
in the image domain (Dim in equation 3), and then are used instead of Cartesian
derivatives in anisotropic smoothing operator Hε (equation 3). The edge diffraction
azimuths Θ are used in the AzPWD operator D (step 6) and in the anisotropic
smoothing operator Hε to prevent smearing across the edges.
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Figure 3: Reflectivity model for the synthetic data example. Reflectivity corresponds
to density contrasts while the velocity is kept constant at 2.0 km/s throughout the
volume.

(a)

(b)

Figure 4: (a) Zigzag zero-offset synthetic; (b) 3D Kirchhoff time migration of the
zigzag zero-offset synthetic (Figure 4a). While focusing of both reflections and edge
diffractions can be observed in (b), channel edges are masked by specular energy and
appear to be blurred.
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(a)

(b)

Figure 5: (a) AzPWD and path-summation integral migration applied to the zigzag
zero-offset synthetic (Figure 4a) : A high diffraction probability along the channel
edges can be observed; (b) Inversion result: edge diffractions are highlighted and
denoised.



Merzlikin et al. 12Anisotropic Smoothing Diffraction Imaging

with paravans (diverters) at the ends oriented perpendicular to the inline (transit)
direction that tows twelve 25 m long streamers with separation of 10− 15 m. Source-
receiver offsets are on order of 100 − 150 m, while the source sampling is 6.25 m.
The target interval of interest in this paper is associated with the 0.222 s time slice,
which approximately corresponds to 160 m depth. Diffraction imaging is applied to
the dataset stack preprocessed with the following procedures: 40 Hz low-pass filter,
wavelet deconvolution, surface-consistent amplitude corrections, predictive deconvo-
lution, missing trace interpolation and acquisition footprint elimination using F-K
filtering in the image domain. More detailed description of the acquisition geome-
try, geology, and interpretation of diffraction images can be found in Klokov et al.
(2017b) and Merzlikin et al. (2017b). Here we focus on the interval with a channel
of high wavelength sinuosity (Merzlikin et al., 2017b). For simplicity, constant ve-
locity model of 1.5 km/s is used for both migration and inversion. Higher accuracy
diffraction-based velocity estimation for the same dataset is described in Merzlikin
et al. (2017b).

The stacked volume is shown in Figure 6. The post-stack 3D Kirchhoff time migra-
tion image of the target slice is shown in Figure 7a. Channel delineation is hindered
by stronger reflections and acquisition footprint - horizontal lines. We eliminate the
footprint in inline and crossline PWD diffraction images using F-K filtering before
combining them in a structure tensor (equation 2) and forming AzPWD linear com-
bination (Merzlikin et al., 2017b). Result of AzPWD volume migration is shown in
Figure 7b. Channel and other small-scale features (e.g. fault at in-lines 2.5− 3.0 km
and cross-lines 6.0− 6.4 km) are highlighted but the image is still noisy.

We follow the proposed workflow and first generate the data to be fit by the
inversion (Figure 8a) by applying AzPWD and path-summation integral migration
to the stack (Figure 6). We run five outer and two inner iterations and use λ =
0.008, ε = 20, N = 30 and K = 1. Due to low signal-to-noise ratio of the dataset
small number of inner iterations is used to prevent leakage of noise to the diffraction
image domain. The result of the proposed approach is shown in Figure 8b. The
channel appears to be highlighted and denoised. Most of the low-amplitude events
are also preserved and highlighted including the fault feature (in-lines 2.5 − 3.0 km
and cross-lines 6.0 − 6.4 km). Discontinuities of edges intersecting each other at
inlines 1.0 − 1.5 km and crosslines 4.0 − 5.0 km are caused by their rapidly varying
orientations prohibiting smoothing from emphasizing different strikes simultaneously.

Figures 9a and 9b show the diffractivity model after thresholding and after thresh-
olding followed by anisotropic smoothing applied correspondingly. The figures illus-
trate that anisotropic smoothing merges neighbor samples and thus is necessary for
edge diffraction regularization. The result is consistent with the experiments shown
in Figure 1.

Figure 10 shows the stack after reflection elimination, modeled diffractions from
denoised diffractivity shown in Figure 8b and their difference. Denoised diffractions
in Figure 10b show clear hyperbolic signatures. Reflection energy remainders after
AzPWD application prominent in Figure 10a (e.g., 0.222 s TWTT (two-way trav-
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Figure 6: High-resolution 3D marine seismic dataset from the Gulf of Mexico: stacked
volume.

eltime), inline 1.625 km and crosslines 5.5 − 6.25 km and 0.222 s TWTT, inlines
2.4− 2.7 km and crosslines 6.25− 6.5 km) are also removed. Difference in Figure 10c
is predominated by noise, reflection remainders (e.g., regions mentioned above) and
acquisition footprint and proves the effectiveness of the approach.

To account for amplitude differences and for higher continuity of denoised diffrac-
tions (Figure 10b) in comparison to the stack with AzPWD (Figure 10a) signal and
noise orthogonolization (Chen and Fomel, 2015) has been applied. Similarity between
restored signal (Figure 10b) and restored noise (Figure 10c) is measured. Then, sig-
nal energy, which leaked to the difference volume (Figure 10c) and which has high
similarity with the signal events actually predicted (Figure 10b), is withdrawn from
the noise volume and added to the signal estimate.

FIELD DATA EXAMPLE II

The second field data example comes from the Cooper Basin onshore Western Aus-
tralia. The dataset corresponds to stacked (with 25×25 m bin size) preprocessed data
acquired as a 3D land seismic survey with fully azimuthal distribution of offsets and a
far offset of 4000 m. Preprocessing sequence includes noise attenuation, near-surface
static corrections, despike, surface-consistent deconvolution, Q-compensation whiten-
ing and time-variant filter applied after stacking. The target horizon slice picked by
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(a)

(b)

Figure 7: 0.222 s time slice: (a) 3D post-stack Kirchhoff migration of the stack
shown in Figure 6; (b) 3D post-stack Kirchhoff migration of the stack after AzPWD.
Subsurface discontinuities appear to be highlighted in (b) in comparison to (a), in
which they are masked by specular energy. At the same time, diffraction image (b)
still appears to be noisy.
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(a)

(b)

Figure 8: 0.222 s time slice: (a) observed data (Figure 6) preconditioned by AzPWD
and path-summation integral migration; (b) inversion result (strong smoothing is
used to highlight the continuity of edge diffractions). Significant improvement in
signal-to-noise ratio of edge diffractions has been achieved (compare with Figure 7b).
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(a) (b)

Figure 9: Last iteration diffractivity model: (a) after thresholding; (b) after thresh-
olding followed by anisotropic smoothing. While thresholding allows for denoising,
anisotropic smoothing emphasizes edge diffraction continuity and accounts for its
kinematic behavior when observed along the edge.

the interpreter and used for the performance evaluation of the method corresponds
to the interface between tight-gas sand and coals (Tyiasning et al., 2016). The depth
of the interface is approximately 2500 m. Structural complexity of the overburden
can be characterized as high. Detailed geological description of the area as well as
the comparison of diffraction imaging results to discontinuity-type attributes is given
by Tyiasning et al. (2016). Here, we apply the developed approach to the dataset.
Prestack time migration velocity is used for both full-wavefield migration and the
proposed inversion approach for edge diffraction imaging.

Figure 11 shows a stacked volume of the dataset. We focus on the window around
the target horizon, which on average corresponds to 1.72 s TWTT. Figure 12a shows
conventional image of the target horizon slice generated with 3D post-stack time
Kirchhoff migration. We then apply reflection removal procedure to the stack (Fig-
ure 11), migrate it, and generate the image shown in Figure 12b. Smaller scale
features become highlighted, e.g., faults between 8 − 10 km inlines and 0 − 4 km
crosslines. Acquisition footprint is noticeable on both of the images (Figure 12) and
corresponds to the low-amplitude events aligned in a grid-like fashion (easy to notice
between inlines 0− 2 km and crosslines 6− 8 km). We apply the developed workflow
to further highlight and denoise diffractions.

First, we generate the data to be fit by the inversion - the stack weighted by a
path-summation integral after reflection elimination (Figure 13a). We run twenty
outer and two inner iterations and use λ = 4, ε = 10, N = 20 and K = 1. As in the
previous data example we use a low number of internal iterations to avoid noise fitting
in general and footprint in particular. The inversion result along the target horizon
is shown in Figure 13b. 3D cubes of the migrated stack, the migrated stack after
reflection elimination and the inversion result are shown in Figures 14, 15 and 16.
Edges masked by the specular energy on the full-wavefield image (Figure 14), are
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(a)

(b)

(c)

Figure 10: (a) Stack with reflections removed; (b) Kirchhoff modeling of diffractivity
from Figure 9b; (c) difference between (a) and (b) is predominated by noise and,
in particular, by reflection remainders (notice coherent events with slowly varying
amplitudes, e.g., 0.222 s TWTT, inline 1.625 km and crosslines 5.5 − 6.25 km and
0.222 s TWTT, inlines 2.4 − 2.7 km and crosslines 6.25 − 6.5 km) and acquisition
footprint.
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Figure 11: 3D sesimic dataset from the Cooper Basin onshore Western Australia:
stacked volume.

highlighted on the image after reflection elimination (Figure 15). At the same time,
edge diffractions produced by the inversion (Figure 16) appear to be clearer and have
higher signal-to-noise ratio.

Further, we apply Kirchhoff modeling to the inversion result (Figures 13b and 16),
restore diffractions (Figure 17), and subtract the result from the stack after reflection
elimination (Figure 18). The result of subtraction shown in Figure 19 can be treated
as noise eliminated during the inversion. Signal and noise orthogonalization (Chen
and Fomel, 2015) is applied to account for aperture difference between observed and
restored diffractions (for instance, often only a single diffraction flank can be observed
in the data leading to spuriously high difference or the “noise estimate”) and to bring
back some of the energy accidentally leaked to the noise domain.

The acquisition footprint evident in Figure 19 suggests the high performance of the
method. Improvement can be noticed between 6−10 km inlines and 2−4 km crosslines
associated with the extraction of small-scale discontinuities. Compare the inversion
result Figure 13b and the result of migration shown in Figure 12b. Same subtle events
are located at crossline 3.25 km between inlines 7 − 9 km (Figures 17 and 18) and
have a clear hyperbolic shape (Figure 17), which appears when edge diffractions are
observed perpendicular to edges. Good restoration quality can also be inferred from
the “circular” structure between 6 − 8 km inlines and 0 − 2 km crosslines. Both of
these areas have high similarity between the initial diffraction stack (Figure 18) and
the stack with diffractions “restored” and denoised by inversion (Figure 17) leading to
low amplitudes in the difference section (Figure 19) primarily associated with noise.
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(a)

(b)

Figure 12: Target horizon slice (the interface between tight-gas sand and coals picked
by the interpreter (∼ 1.72 s TWTT)): (a) 3D post-stack Kirchhoff migration of the
stack shown in Figure 11; (b) 3D post-stack Kirchhoff migration of the stack after
AzPWD. Subsurface discontinuities appear to be highlighted in (b) in comparison
to (a), in which they are masked by specular energy. At the same time, diffraction
image (b) still has some noise present.
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These features also follow “frowning”-focusing-“smiling” behaviour under migration
velocity perturbation supporting their diffraction nature in the plane perpendicular
to the edge.

Some features are lost in the area between 10 − 11 km inlines and 6 − 8 km
crosslines. Event between inlines 12− 14 km and crosslines 6− 8 km is not predicted
(Figure 19). High magnitude events observed between inlines 1 − 3 km at crossline
3.25 km and between crosslines 4− 5 km at inline 5.35 km (Figure 16 and 17) can be
associated with reflections leaked to the diffraction image domain or can actually be
edge diffractions observed in the plane not perpendicular to the edge and thus having
elongated signature. The event located at crossline 3.25 km between inlines 5− 7 km
inversion interprets as a reflection and removes it from the diffraction imaging result
(Figure 16 and 17). High difference values following the channel in the difference cube
(Figure 19) can also be associated with the reflection remainders removed from the
diffraction image domain.

It should be mentioned that the target horizon has a highly oscillating pattern in-
cluding a high magnitude drop in the left part of the cube (inlines 1−3 km) making dip
estimation for “ideal” reflection-diffraction separation simultaneously for the whole
area challenging. More careful dip estimation possibly with different parameters in
different regions of the dataset should further improve the result. Inversion parame-
ters can definitely be tweaked to improve the results but even with these trial values
the majority of the edges including some subtle features (e.g., events at crossline
3.25 km between inlines 7 − 9 km (Figure 16)) hardly noticeable on the migrated
stack after reflection elimination (Figure 15) has been extracted and highlighted.

DISCUSSION

The dependency of workflow’s ability to produce sharp images of edge diffractions
upon the migration velocity accuracy requires further investigation. On one hand, the
approach incorporates least-squares migration framework known to be quite sensitive
towards velocity model (Nemeth et al., 1999). On the other hand, path-summation
integral provides a velocity-model-independent weighting of the misfit, which is ex-
pected to increase the method’s tolerance towards velocity model errors.

The second field example illustrates the efficiency of the proposed approach in
a complex geological environment. Most edge diffractions, and especially those as-
sociated with major discontinuities, are extracted and denoised. Some reflection
energy remainders are present but are limited to locations characterized by a pe-
culiar reflection pattern, which was not picked up by the dip estimation tuned to
perform reflection-diffraction separation over the whole area. This is the dip esti-
mation problem, results of which can be improved, for instance, by subdividing the
area into smaller fragments, and, thus, does not question the validity of the approach
presented. The latter statement is also supported by the high performance of the
developed approach when applied to the first field data example. First field data
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(a)

(b)

Figure 13: Target horizon slice (the interface between tight-gas sand and coals picked
by the interpreter (∼ 1.72 s TWTT)): (a) observed data (Figure 11) preconditioned
by AzPWD and path-summation integral migration; (b) inversion result: edge diffrac-
tions have been denoised (compare with Figure 12b).
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Figure 14: 3D post-stack Kirchhoff migration of the stack shown in Figure 11.

Figure 15: 3D post-stack Kirchhoff migration of the stack (Figure 11) after reflection
elimination and edge diffraction extraction with AzPWD. Subsurface discontinuities
appear to be highlighted in comparison to Figure 14, in which they are masked by
specular energy. At the same time, diffraction image still has some noise present.
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Figure 16: Inversion result. Edge diffractions are both highlighted and denoised
(compare with Figure 15).

Figure 17: Kirchhoff modeling of diffractivity from Figure 16. “Clean” diffraction
signatures are recovered: notice hyperbolic shapes when edge diffractions are observed
perpendicular to edges.
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Figure 18: Stack with reflections removed. The majority of reflections is removed,
some hyperbolic signatures can be seen (compare with Figures 11 and 17). Reflec-
tion remainders and noise including acquisition footprint are apparent (compare with
Figure 17).

Figure 19: Difference between Figures 17 and 18 is predominated by noise and thus
supports the validity of denoised edge diffractions (Figure 17).
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example is characterized by a low signal-to-noise ratio and is highly contaminated by
the acquisition footprint. The approach allows successfully untangling edge diffrac-
tions from reflections and noise and provides high resolution images of subsurface
discontinuities. We expect that in production-like environment, geological knowledge
can be used to further adjust the parameter values. For instance, in the first field
data example expected channel sinuosity could guide the smoothing strength for the
edges. In this paper, we focus on highlighting the advantages of the method rather
than on delivering final results for drilling decisions.

The natural extension of the approach is to include reflection modeling into the
inversion. As demonstrated by Merzlikin et al. (2019), both reflections and diffractions
can be inverted for by the same forward modeling operator whereas the separation into
the components can be done on the regularization level. Regularization of diffractions
can stay the same whereas reflections, for instance, can be penalized by a strong
isotropic smoothing operator along the dominant local slopes: specular events locally
do not exhibit lateral symmetry as opposed to edges. Extension of the model space
to include reflections can help to eliminate the reflection remainders in the diffraction
image domain.

High complexity of the overburden often leads to the interference between seismic
events, which results in the presence of multiple dominant local slopes at a single
data sample. While, in this case, the effectiveness of the proposed inversion scheme
in general and of AzPWD in particular will be degraded, the performance could
be improved by pre-applying migration with approximate velocity model to untangle
interfering events, running AzPWD, and then going back to the original data domain.

Anisotropic smoothing is capable of emphasizing one edge direction at once. Edges
with conflicting orientations can be a challenge. The “brute force” way to tackle the
challenge can be scanning for various edge diffraction orientations and picking the
desired ones (Merzlikin et al., 2016). Then, inversion results with alternative orienta-
tions can be compared. At the same time, if coherent noise with a consistent spatial
orientation is present in the data, it can be emphasized by anisotropic smoothing.
Structure tensor orientation determination will treat this noise as signal. Poor illu-
mination and velocity model errors can also reduce the accuracy of structure-tensor
based edge diffraction orientation determination. The latter will degrade the perfor-
mance of anisotropic-smoothing regularization operator. We expect the problem can
be alleviated by utilizing a priori information about geologic discontinuities’ orienta-
tion, e.g. by using predominant azimuths of the faults in the region extracted from a
geomechanical model.

The workflow described in this paper is a 3D extension of the method proposed
by Merzlikin and Fomel (2016). In two dimensions one cannot discriminate between
point and edge diffractions. Distribution of scatterers is spiky and intermittent, which
leads to a natural choice of sparsity constraints on the diffractivity model. The new in-
version scheme is based on two regularization operators: thresholding and anisotropic
smoothing. While thresholding operator imposing sparsity constraints applicable to
both point and edge diffractions remains to be the same as in the 2D counterpart of
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the workflow, anisotropic smoothing enforces continuity along the directions picked up
by the structure tensor and thus is only applicable to edge diffractions. Point diffrac-
tions, which are not elongated in space, will be smeared under anisotropic smoothing
operator action. Currently, our method is biased towards edge diffractions.

Anisotropic smoothing can have spatially variable diffusion coefficient defining its
strength (Weickert, 1998; Hale, 2009). For instance, the coefficient and the direction
of smoothing can depend on the linearity, which can be computed as a ratio of eigen-
values of the PWD-based structure tensor and which can distinguish between the
edges and regions of continuous amplitude variation (Hale, 2009; Wu, 2017). Spa-
tially variable diffusion coefficient could help to alleviate smearing of point diffrac-
tions. Point diffractions in the diffractivity model will exhibit low linearity. For these
samples smoothing power can be reduced and thresholding will be a predominant
regularization operator.

The proposed approach is equivalent to total variation (TV) regularization (e.g.,
Strong and Chan (2003)), in which minimizing l1 norm of a second derivative penal-
izes the model. Hessian of TV is guided by a structure tensor, which forces model
smoothing to be applied along the edges with no smearing across them. Thus, TV
regularization is similar to the one proposed in this paper and can also be used to
penalize edge diffractions. TV implementation challenges are associated withregular-
ization term differentiation during optimization. While this obstacle can be accom-
modated by using sophisticated optimization methods and representing l1-norm as a
square root with a damper (Chan et al., 1999; Burstedde and Ghattas, 2009; Anagaw
and Sacchi, 2012), shaping regularization by anisotropic diffusion appears to be a
viable, simple to implement and fast to converge alternative with no approximations
required. Anisotropic smoothing can be used to regularize full wavefield images in
“conventional” least squares migration and even in iterative velocity-model building
methods.

The workflow can be utilized to extract and denoise diffractions for their subse-
quent depth imaging. Alternatively, a depth imaging operator can replace Kirchhoff
time migration in forward modeling to allow for depth-domain model conditioning,
while misfit weighting by path-summation integral is still performed in time migration
domain.

The inversion can be extended to pre-stack domain. In this case, pre-stack coun-
terparts of the chained forward modeling operators should be used: pre-stack path-
summation integral (Merzlikin and Fomel, 2017), pre-stack migration engine and
pre-stack AzPWD. While expressions for the former two exist, AzPWD has not been
applied in the pre-stack domain. The corresponding method can be derived based on
the approach developed by Taner et al. (2006).
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CONCLUSIONS

We have developed an efficient approach to highlight and denoise edge diffractions
based on least-squares migration. The inverted operator corresponds to the chain of
path-summation integral filter, AzPWD and Kirchhoff modeling operators. While the
combination of path-summation integral filter and AzPWD emphasizes edge diffrac-
tion signatures in the data domain, thresholding and anisotropic smoothing precon-
dition them in the model domain by denoising and enhancing their continuity. Both
forward modeling and shaping regularization operators guide the inversion towards
restoration of edge diffractions. Synthetic and field data examples show high fidelity
of the approach.

The efficiency of the proposed inversion scheme comes from the workflow appli-
cation in time post-stack domain and shaping regularization framework leading to
fast convergence. The inversion scheme we propose can be thought of as an effec-
tive operator directly tailoring edge diffractions and extracting them from the full
wavefield.
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