
Accelerated plane-wave destructiona

aPublished in Geophysics, 78, no. 1, V1-V9, (2013)

Zhonghuan Chen1, Sergey Fomel2, and Wenkai Lu1

ABSTRACT

When plane-wave destruction (PWD) is implemented by implicit finite differ-
ences, the local slope is estimated by an iterative algorithm. We propose an
analytical estimator of the local slope that is based on convergence analysis of
the iterative algorithm. Using the analytical estimator, we design a noniterative
method to estimate slopes by a three-point PWD filter. Compared with the iter-
ative estimation, the proposed method needs only one regularization step, which
reduces computation time significantly. With directional decoupling of the plane-
wave filter, the proposed algorithm is also applicable to 3D slope estimation. We
present both synthetic and field experiments to demonstrate that the proposed
algorithm can yield a correct estimation result with shorter computational time.

INTRODUCTION

Local slope fields have been widely used in geophysical applications, such as wave-field
separation and denoising (Harlan et al., 1984; Fomel et al., 2007), antialiased seis-
mic interpolation (Bardan, 1987), seislet transform (Fomel and Liu, 2010), velocity-
independent NMO correction and imaging (Fomel, 2007b; Cooke et al., 2009), pre-
dictive painting (Fomel, 2010), seismic attribute analysis (Marfurt et al., 1999), etc.

Several tools exist for local slope estimation: local slant stack (Ottolini, 1983; Har-
lan et al., 1984), complex trace analysis (Barnes, 1996), multiwindow dip search (Mar-
furt, 2006), local structure tensor (Fehmers and Höcker, 2003; Hale, 2007), and plane-
wave destruction (Claerbout, 1992; Fomel, 2002). Plane-wave destruction (PWD)
approximates the local wave-field by a local plane wave, and models it using a linear
differential equation (Claerbout, 1992).

When plane-wave destruction is applied on discrete sampled seismic signals, the
corresponding differential equation needs to be discretized by finite differences. Claer-
bout (1992) used explicit finite differences. In this method, plane-wave approximation
of the wavefield can be seen as applying a linear finite impulse reponse (FIR) filter
to the wavefield. Slope estimation is equivalent to estimating a parameter of the FIR
filter. A least-squares estimator of the local slope can be obtained by minimizing the
prediction error of the filter. To improve estimation performance of the explicit finite
difference scheme, Schleicher et al. (2009) proposed total least-squares estimation.
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The implicit finite difference scheme was applied to the differential equation by
Fomel (2002). Using an infinite impulse response (IIR) filter, known as the Thiran
allpass filter (Thiran, 1971), to approximate the phase-shift operator, the plane-wave
destruction equation becomes a nonlinear equation of the slope. An iterative algo-
rithm was designed to estimate the slope. In order to improve stability in the iterative
algorithm, a smoothing regularization (Fomel, 2007a) of the increment can be applied
at each iteration. Iterations of regularization can be time consuming, however, par-
ticularly in the 3D case.

In this paper, we prove the fact that the plane-wave destruction equation is a
polynomial equation of an unkown slope. In the case of a three-point approximation
of Thiran’s filter, the convergence results of the iterative algorithm can be analytically
analyzed. In this case, we obtain an analytical estimator of the local slope and show
that the smoothing regularization can be applied on the final estimator only once.
This approach reduces the computational time significantly. We present both 2D and
3D examples, which demonstrate that the proposed algorithm can obtain a slope-
estimation result faster than the iterative algorithm, with a similar or even better
accuracy.

THEORY
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Figure 1: The iterative results of Newton’s algorithm. The initial point is p0 = 0 (solid
circle), and the convergence result is marked by a blank circle: (a) when D ≤ 0, (b)
when D > 0 and a1a2 > 0, (c) when D > 0 and a1a2 < 0.
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Review of PWD

The local plane wave can be represented by the following differential equation (Claer-
bout, 1992):

∂u

∂x
+ σ

∂u

∂t
= 0 , (1)

where σ is the local slope in continuous space, with dimension time/length. The
wavefields observed at the two positions x1, x2 have a time delay which is proportional
to their distance, σ|x1−x2|. In the sampled system with space and time intervals ∆x
and ∆t, we define the discrete space slope in the unit of ∆t/∆x, as p = σ∆x/∆t. As
p is independent of the sampling interval, it can be directly used in irregular dataset
(in this case, the unit of the slopes becomes space variant). The time delay between
two adjacent positions is then the slope p∆t:

u(x, t) = u(x+ ∆x, t+ p∆t) . (2)

With the Z transform applied along both time and space directions, the above
equation becomes

(1− ZxZp
t )U(Zx, Zt) = 0 , (3)

where Zt is the unit time-shift operator, Zx denotes the unit space-shift operator and
U(Zx, Zt) is the Z transform of u(x, t). The operator 1 − ZxZ

p
t is the plane-wave

destructor. Using Thiran’s fractional delay filter H(Zt) =
B(1/Zt)

B(Zt)
(Thiran, 1971) to

approximate the time-shift operator Zp
t = ejωp, where ω is the circular frequency, the

plane-wave destructor can be expressed as (Fomel, 2002),

C(p) = B(Zt)− ZxB(
1

Zt
), (4)

where

B(Zt) =
N∑

k=−N
bk(p)Z

−k
t , (5)

N is the order of the noncausal temporal filter and bk(p) are functions of the local
slope p.

Equation 4 is a 2D filter. Applying the filter at an arbitrary point in the wavefield,
the plane-wave destruction equation 3 becomes a nonlinear equation for the local slope
p:

C(p, Zx, Zt)U(Zx, Zt) ≈ 0 . (6)

An iterative method, such as Newton’s method, can be applied to find the slope. In
practice, wavefields are polluted by noise and the plane wave assumption may not hold
true where faults and conflicting boundaries exist. To obtain a stable slope estimation,
an additional smoothing regularization process (Fomel, 2007a) is needed at each step.
The total computational cost of slope estimation by plane-wave destruction becomes
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O(NdNfNlNn), where Nd is the size of the data, Nf = 2N + 1 is the size of the
filter, Nl is the number of linear iterations for regularization, and Nn is the number of
nonlinear iterations for solving equation 6. Typical values are Nf = 3, 5, Nl = 10-50,
and Nn = 5-10.

Accelerated PWD

Gauss-Newton’s iteration searches the solutions for nonlinear equation 6 as follows:
Let pk be the estimated slope at step k, with estimating error (or destructive error)
ek = C(pk)U(Zx, Zt). In order to find the correct solution pk+1 that minimizes ek+1,
we need to find the increment ∆pk from the local linearization:

ek+1 = C(pk)U(Zx, Zt) + C ′(pk)U(Zx, Zt)∆pk ≈ 0 , (7)

where C ′(pk) is the derivative of C(p) at pk with respect to p.

The iterative algorithm stops when a stationary point or a root of C(p)U is
reached. They are:

1. Points where C ′(pk)U = 0: When pk satisfies C ′(p)U = 0, then ek+1 = ek, and
the ∆pk dependency in equation 7 is removed, stopping further iterations on
pk.

2. Points where C(pk)U = 0 and C ′(p)U 6= 0: In this case, ∆pk = 0, thus pk+1 =
pk, eliminating the need for further improvements on pk.

The iterative algorithm for equation 6 may converge at different points, depending
on the initial point that we chose; p0 = 0 is a common practical choice for the initial
solution. In this case, the iterative algorithm may converge to the least absolute root,
which denotes the event with smallest dip angle.

In order to analyze the convergence results, the maximally flat fractional delay
filter (Thiran, 1971; Zhang, 2009) is designed with polynomial coefficients:

bk(p) =
(2N)!(2N)!

(4N)!(N + k)!(N − k)!

N−1−k∏
m=0

(m− 2N + p)
N−1+k∏
m=0

(m− 2N − p). (8)

Details on how to design the filter can be found in the Appendix.

Since bk(p) is a polynomial of p, expanding it, we get bk(p) =
2N∑
i=0

ckip
i and

B(Zt, p) =
N∑

k=−N

2N∑
i=0

ckiZ
−k
t pi . (9)



Chen, Fomel & Lu 5 Accelerated plane-wave destruction

From equation 8, it is obvious that bk(p) = b−k(−p), therefore cki = (−1)ic−k,i and

B(Zt, p) = B(
1

Zt
,−p). (10)

Substituting the above two equations, the nonlinear equation 6 becomes a 2N -th
degree polynomial equation for p:

2N∑
i=0

aip
i = 0, (11)

and the coefficients of the polynomial plane-wave destruction can be expressed as

ai = [1− (−1)iZx]
N∑

k=−N
ckiZ

−k
t U, (12)

which says that the coefficients of the polynomial PWD can be obtained by applying
a 2D filter on the wavefield u. Moreover, the 2D filter can be decoupled into the

cascade of two 1D directional filters: the temporal filter
N∑

k=−N
ckiZ

−k
t and the spatial

filter 1− (−1)iZx.

In the special case of N = 1, we get a three-point approximation of B(Zt). It
takes the following form (Fomel, 2002):

B(Zt) =
(1 + p)(2 + p)

12
Z−1t +

(2 + p)(2− p)
6

+
(1− p)(2− p)

12
Zt . (13)

The plane-wave destruction equation 11 is a quadratic equation. The coefficients
ai(i = 0, 1, 2) can be solved for and expressed as

ai =
1

12
[1− (−1)iZx]vi , (14)

where vi are outputs of the following three-point temporal filters:

v0 = 2(Z−1t + 4 + Zt)U , (15)

v1 = 3(Zt − Z−1t )U , (16)

v2 = (Z−1t − 2 + Zt)U . (17)

In this case, the quadratic plane-wave destruction equation 11 has one stationary

point and two roots, which can be analytically expressed as:
{
−a1
2a2

, −a1±
√
D

2a2

}
, where

D = a21 − 4a0a2.

The plots in Figure 1 show the convergence process of the iterative algorithm when
we choose p0 = 0 as the starting value. Geometrically when D ≤ 0, the iteration

converges to the stationary point
−a1
2a2

, as shown in Figure 1a. When D > 0, it
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converges to the least absolute solution of equation 11. Figure 1b and 1c shows
the convergence process to the least absolute solution in different cases. We can
summarize the convergence result of the iterative algorithm as follows:

p =



−a1
2a2

D ≤ 0

−2a0

a1 −
√
D

D > 0, a1 < 0 .

−2a0

a1 +
√
D

D > 0, a1 > 0

(18)

As
−2a0

a1 ±
√
D

=
−a1 ±

√
D

2a2
in the above equation, we use

−2a0

a1 ±
√
D

instead of

−a1 ±
√
D

2a2
to obtain better numerical stability.

When the data is polluted by noise, in order to obtain a robust slope estimation,
we can combine the equations in a local window into the following equation set:

Fp ≈ g, (19)

where F is a normalized diagonal matrix and g is a vector. Their elements are
denuminators and numerators of equation 18 respectively. When we are solving the
above equation set by least squares, we can use Tikhonov’s regularization (Fomel,
2002) or the shaping regularization (Fomel, 2007a, equation 13) to obtain a smooth
solution as follows

p = H[I + HT (FTF− I)H]−1HTFTg , (20)

where H is an appropriate smoothing operator. In this case, the regularization runs
only once, therefore the computational cost is reduced to O(NdNfNl).

In 3D applications, there are two polynomial PWD equations for inline and
crossline slopes separately. Note that, using the decoupling, inline and crossline
slope estimations can share the temporal filtering results in equations 15−17. We can
obtain the coefficients of the crossline plane-wave destruction equation as

ai =
1

12
[1− (−1)iZy]vi (21)

The five-point or longer approximations of B(Zt) can achieve higher accuracy.
Equation 6 in this case becomes a higher-order polynomial equation (see details in the
Appendix), which can be solved numerically. However, there are multiple stationary
points, and it is difficult to determine the right one analytically. For applications that
need five-point or higher accuracy, we suggest obtaining an initial slope estimation
by the proposed three-point method and using it to make the iterative algorithm
converge faster (to decrease Nn).
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EXAMPLES

Synthetic examples

Figure 2: Harmonic waves with constant slope p0 = 0.3.

To test the performance of the proposed slope-estimation method, we generated
a harmonic wave field with constant slope p0 = 0.3 shown in Figure 2. We added
different scales of additive white Gaussian noise (AWGN) to the wave field and esti-
mate the slope by the proposed method. To compare with the iterative algorithm by
Fomel (2002), the mean square error (MSE) is used as the criterion:

MSE(p) = E{(p− p0)2}. (22)

We use five iterations in the iterative method, Nn = 5. For constant slope model,
using a large smoothing window, the smoothing regularization can converge faster
(with less Nl) and we can obtain a better estimation accuracy. For each methods, we
try the smoothing windows from 2 to 200 and show the mean square errors in Figure
3. Compared with the iterative method, the proposed method has better accuracy at
the left upper (low SNR and small smoothing window) and worse accuracy at right
bottom corner (high SNR and large smoothing window).

We show the total runtime of all the noise scale data in Figure 4. For all smoothing
windows in the regularization, the proposed method (solid line) only uses about one
fifth run time of the three-point (N = 1) iterative method (dash line).

A more complicated model from Claerbout (1999) and Fomel (2002) is shown
in Figure 5a. It has variable slopes in synclines, anticlines, and faults. The slope
estimated by the proposed method is shown in Figure 5b. The estimation takes about
20 ms. The three-point (N = 1) iterative method can obtain a similar estimation
(shown in Figure 5c) by five iterations, which takes about 130ms. Both methods use
a 4-point smoothing window in the regularization, but the proposed method obtains
a slightly smoother estimation. In Figure 5d we show the faults detected by the
residuals of the proposed plane-wave destruction.
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Figure 3: Mean square errors of of the slope estimations by the proposed method (a)
and the three-point (N = 1) iterative method (b).

Figure 4: Run time of the proposed method (solid line) and the three-point (N = 1)
iterative method (dash line).
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a b

c d

Figure 5: 2D slope estimation example: (a) synthetic data, (b) slope field estimated by
the proposed algorithm, (c) slope field estimated by the iterative algorithm after five
iterations, (d) faults detection by plane-wave destruction with the estimated slope.
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Application

The 2D seislet transform (Fomel and Liu, 2010) uses local slopes to predict and
update even and odd traces in the wavelet lifting scheme. The seislet transform itself
is fast, but the slope estimation step is comparatively slow. The 3D seislet transform
can be constructed in the same way by using 3D slopes and cascading 2D transforms
in inline and crossline directions. So that an efficient transform can be built, the
proposed accelerated plane-wave destruction is applied to slope estimation.

Figure 6 shows a part of the Teapot Dome image from Wyoming. The 3D slope
estimation yields two slope fields along two space directions. Figure 7 shows the local
inline and crossline slope fields estimated by the proposed algorithm.

The two slopes are used by the lifting scheme in the seislet transform to obtain
the seislet transform coefficients. The coefficients of the 2D seislet transform are
concentrated at the planes near the zero inline plane, as shown in Figure 8a, whereas
in Figure 8b, the 3D transform coefficients are concentrated in the corner region near
the origin.

Figure 6: A portion of the 3D data from the Teapot dataset.

To illustrate the compressive performance of the 3D seislet transform, Figure 9
shows the reconstruction results at different percentages of the compression. Most of
the data can be reconstructed using only 1% of the seislet coefficients (1:100 compres-
sion ratio). In order to compare with the iterative methods quantitatively, we define
the following normalized cross-correlation (NCC)

NCC(x,y) =
xTy

‖x‖2‖y‖2
. (23)

In the seislet transform, the more accurate dip we use, the better compression we
can obtain. The NCC between the reconstructed data and the original data can be
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a b

Figure 7: 3D slopes estimated by the proposed algorithm: (a) inline slope, (b)
crossline slope.

a b

Figure 8: Coefficients of: (a) the 2D seislet transform along inline direction only, (b)
the 3D seislet transform.

a b

Figure 9: Reconstruction of 3D-seislet-compressed data using: (a) 5% of the seislet
coefficients, (b) 1% of the seislet coefficients.
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used to quantify the compressive performance. In Table 1, the proposed method is
compared with both three-point (N = 1) and five-point (N = 2) iterative methods.

In all the three methods, we use ten-point smoothing windows in both inline and
crossline dimensions, and use five-point smoothing window in time direction. In or-
der to obtain a similar slope estimation as the proposed method, the three-point
(N = 1) and five-point (N = 2) iterative mathods need about six and five iterations
respectively. The five-point method can obtain a better compression ratio than the
three-point method, because of its better accuracy in slope estimation. However, al-
though the iterative methods have smaller PWD residuals, neighter of them achieves
a better NCC than the proposed method. In this case, using the noniterative estima-
tion as the initial in five-point estimation can save at least 250s. That is to say, the
computational time cost is reduced by a factor of about 6.

Method N Iterations Runtime (s) RES-inline RES-xline NCC-1 NCC-5
noniterative 1 0 54.63 0.2314 0.2242 0.8858 0.9618

iterative 1 6 334.5 0.2267 0.2172 0.8814 0.961
iterative 2 5 301.6 0.2194 0.2075 0.8838 0.9615

Table 1: Performance of different dip estimation methods in 3D seislet transform:
Runtime is the run time of the slope estimation process; RES-inline is the inline
residual; RES-xline is the crossline residual; NCC-1 is the normalized cross-correlation
between the original data and the reconstruction using one percent of the seislet
coefficients; NCC-5 uses five percents of the coefficients. The run time for 2D and 3D
seislet transform are about 22.45 s and 45.0 s respectively.

CONCLUSIONS

In this paper, we derived an analytical estimator of the local slope in three-point
implicit plane-wave destruction. On the basis of this result, we built an accelerated
slope estimation algorithm. Examples show that the proposed method can produce
a result that is similar to that of the iterative algorithm, at a reduced computation
time.

Two or more conflicting slopes can be estimated simultaneously by the iterative
algorithm. In this case, the PWD equation is a multi-variable polynomial, and the
convergence analysis becomes complicated. The proposed noniterative method is not
yet suitable for multi-slope estimation. However, we believe that it can find many
applications in situations where one dominant slope is sufficient.
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APPENDIX A: POLYNOMIAL FORM OF PWD

If all the coefficients of B(Zt) are polynomials of p, equation 4 is also a polynomial of
p, and the plane-wave destruction equation becomes in turn a polynomial equation of
p. The problem is to design a 2N + 1 points filter B(Zt) with polynomial coefficients

such that the allpass systemH(Zt) = B(1/Zt)
B(Zt)

can approximate the phase-shift operator

Zp
t = ejωp. Denoting the phase response of the system as θ(ω), that is H(ejω) = ejθ(ω),

the group delay of the system is

τ(ω) =
∂θ(ω)

∂ω
. (A-1)

The maximally flat criteria designs a filter with a smoothest phase response. There
are 2N unknown coefficients in H(Zt), so we can add 2N flat constraints for the first
2N−th order deviratives of the phase response. It becomes (Zhang, 2009, equation
7) 

τ(ω) = p
∂nτ(ω)

∂ωn
= 0 n = 1, 2, . . . , 2N

, (A-2)

which is equivalent to the following linear maximally flat conditions (Thiran, 1971):

N∑
k=−N

(d− k)2n+1bk = 0, (A-3)

where n = 0, 1, . . . , 2N −1 and d = p/2 is the fractional delay of B(1/Zt) or 1/B(Zt).

In order to solve bk from the above equations, Thiran (1971) used an additional
condition b0 = 1, which leads bk(k 6= 0) to be a fractional function of p. Differently
from that, we use the following condition,

N∑
k=−N

bk = 1, (A-4)

where bk can be proved to be polynomials of p.

Let vector b = [b0, bN , . . . , b1, b−1, . . . , b−N ]T. Combining equations A-3 and A-4,
we rewrite them into the following matrix form:

1 1 . . . 1 1 . . . 1
d d−N . . . d− 1 d+ 1 . . . d+N
d3 (d−N)3 . . . (d− 1)3 (d+ 1)3 . . . (d+N)3

...
... . . . . . . . . . . . .

...
d4N−1 (d−N)4N−1 . . . (d− 1)4N−1 (d+ 1)4N−1 . . . (d+N)4N−1

b =



1
0
0
...
0

 .
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The matrix on the left side, denoted as V, can be split into four blocks

[
A B
C D

]
as shown above. Following the lemma of matrix inversion,

V−1 =

[
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 + D−1(A−BD−1C)−1BD−1

]
, (A-5)

therefore the coefficients

b = V−1[1, 0, . . . , 0]T =

[
(A−BD−1C)−1

−D−1C(A−BD−1C)−1

]
. (A-6)

Let subindex i = −N,−N + 1, . . . ,−1, 1, 2, . . . , N and xi = d + i. Submatrix D
can be expressed as

D = EX

=



1 . . . 1 1 . . . 1
(d−N)2 . . . (d− 1)2 (d+ 1)2 . . . (d+N)2

(d−N)4 . . . (d− 1)4 (d+ 1)4 . . . (d+N)4

... . . .
...

... . . .
...

(d−N)4N−2 . . . (d− 1)4N−2 (d+ 1)4N−2 . . . (d+N)4N−2

 diag



x−N
...
x−1
x1
...
xN


,

so D−1 = X−1E−1. Denoting U = E−1 with elements uij, j = 1, 2, . . . , 2N , as E is a
Vandermonde matrix, uij and Lagrange intepolating polynomials have the following
relationship:

2N∑
j=1

uijx
2j−2 = `i(x), (A-7)

where i = −N, . . . ,−1, 1, . . . , N , and `i(x) is the Lagrange polynomial related to the
basis d+ i,

`i(x) =
m6=i,m 6=0∏
−N≤m≤N

x2 − (d+m)2

(d+ i)2 − (d+m)2
. (A-8)

Substituting the above equation, uij and x into equation A-7, we can prove equa-
tion A-7. It follows that

[E−1C]i = d`i(d), (A-9)

[D−1C]i = [X−1E−1C]i =
d

d+ i
`i(d), (A-10)

with

`i(d) =
(−1)i+1N !N !

(N + i)!(N − i)!
d+ i

d

N∏
m=−N

2d+m

2d+m+ i
. (A-11)
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Thus hence

A−BD−1C =
N∑

i=−N
(−1)i

N !N !

(N + i)!(N − i)!

N∏
m=−N

p+m

p+m+ i

=
(4N)!N !N !

(2N)!(2N)!

1
2N∏

m=N+1

(m2 − p2)
(A-12)

and

[A−BD−1C]−1 =
(2N)!(2N)!

(4N)!N !N !

2N∏
m=N+1

(m2 − p2). (A-13)

It is the coefficient b0, a 2N -th degree polynomial of p. Substituting it into equa-
tion A-6, the coefficients at k = ±1,±2, . . .±N are expressed as

bk = −[D−1C]k[A−BD−1C]−1

=
(2N)!(2N)!

(4N)!(N + k)!(N − k)!

N−1−k∏
m=0

(m− 2N + p)
N−1+k∏
m=0

(m− 2N − p).(A-14)

With the additional condition A-4 in 2N + 1 points approximation, all the co-
efficients are polynomials of p of 2N -th degree. Thus the plane-wave destruction
equation 6 therefore is proved to be a polynomial equation of 2N -th degree.
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