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ABSTRACT

We consider the problem of constructing a wave extrapolation operator in a
variable and possibly anisotropic medium. Our construction involves Fourier
transforms in space combined with the help of a lowrank approximation of the
space-wavenumber wave-propagator matrix. A lowrank approximation implies
selecting a small set of representative spatial locations and a small set of repre-
sentative wavenumbers. We present a mathematical derivation of this method,
a description of the lowrank approximation algorithm, and numerical examples
which confirm the validity of the proposed approach. Wave extrapolation us-
ing lowrank approximation can be applied to seismic imaging by reverse-time
migration in 3D heterogeneous isotropic or anisotropic media.

INTRODUCTION

Wave extrapolation in time plays an important role in seismic imaging (reverse-time
migration), modeling, and full waveform inversion. Conventionally, extrapolation in
time is performed by finite-difference methods (Etgen 1986). Spectral methods (Tal-
Ezer et al. 1987; Reshef et al. 1988) have started to gain attention recently and to
become feasible in large-scale 3-D applications thanks to the increase in computing
power. The attraction of spectral methods is in their superb accuracy and, in partic-
ular, in their ability to suppress dispersion artifacts (Chu and Stoffa 2008; Etgen and
Brandsberg-Dahl 2009).

Theoretically, the problem of wave extrapolation in time can be reduced to an-
alyzing numerical approximations to the mixed-domain space-wavenumber operator
(Wards et al. 2008). In this paper, we propose a systematic approach to designing
wave extrapolation operators by approximating the space-wavenumber matrix symbol
with a lowrank decomposition. A lowrank approximation implies selecting a small
set of representative spatial locations and a small set of representative wavenum-
bers. The optimized separable approximation or OSA (Song 2001) was previously
employed for wave extrapolation (Zhang and Zhang 2009; Du et al. 2010) and can
be considered as another form of lowrank decomposition. However, the decomposi-
tion algorithm in OSA is significantly more expensive, especially for anisotropic wave
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propagation, because it involves eigenfunctions rather than rows and columns of the
original extrapolation matrix. Our algorithm can also be regarded as an extension
of the wavefield interpolation algorithm of Etgen and Brandsberg-Dahl (2009), with
optimally selected reference velocities and weights. Another related method is the
Fourier finite-difference (FFD) method proposed recently by Song and Fomel (2011).
FFD may have an advantage in efficiency, because it uses only one pair of multidimen-
sional forward and inverse FFTs (fast Fourier transforms) per time step. However, it
does not offer flexible controls on the approximation accuracy.

Our approach to wave extrapolation is general and can apply to different types of
waves, including both acoustic and elastic seismic waves, as well as velocity continu-
ation (Fomel 2003b), offset continuation (Fomel 2003a), prestack exploding reflector
extrapolation (Alkhalifah and Fomel 2010), etc.

The paper is organized as follows. We first present the theory behind the proposed
algorithm, then describe the algorithm and test its accuracy on a number of synthetic
benchmark examples of increasing complexity.

WAVE EXTRAPOLATION

Let P (x, t) be the seismic wavefield at location x and time t. The wavefield at the
next time step t+ ∆t can be approximated by the following mixed-domain operator
(Wards et al. 2008)

P (x, t+ ∆t) =

∫
P̂ (k, t) ei φ(x,k,∆t) dk , (1)

where P̂ (k, t) is the spatial Fourier transform of P (x, t)

P̂ (k, t) =
1

(2 π)3

∫
P (x, t)e−ik·x dx , (2)

where k is the spatial wavenumber. To define the phase function φ(x,k, t), which
appears in equation (1), one can substitute approximation (1) into the wave equation
and extract the geometrical (high-frequency) asymptotic of it. In case of seismic wave
propagation, this leads to the eikonal-like equation

∂φ

∂t
= ±V (x,k) |∇φ| , (3)

where V (x,k) is the phase velocity, and the choice of the sign corresponds, in the
case of a point source, to expanding or contracting waves. In the isotropic case, V
does not depend on k. The initial condition for equation (3) is

φ(x,k, 0) = k · x , (4)

which turns equation (1) into the simple inverse Fourier transform operation.
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Assuming small steps ∆t in equation (1), one can build successive approximations
for the phase function φ by expanding it into a Taylor series. In particular, let us
represent the phase function as

φ(x,k, t) ≈ k · x + φ1(x,k) t+ φ2(x,k)
t2

2
+ · · · (5)

Correspondingly,

|∇φ| ≈ |k|+ ∇φ1 · k
|k|

t+O(t2) . (6)

Substituting expansions (5) and (6) into equation (3) and separating terms with
different powers of t, we find that

φ1(x,k) = V (x,k) |k| , (7)

φ2(x,k) = V (x,k)∇V · k . (8)

When either the velocity gradient ∇V or the time step ∆t are small, the Taylor
expansion (5) can be reduced to only two terms, which in turn reduces equation (1)
to the familiar expression (Etgen and Brandsberg-Dahl 2009)

P (x, t+ ∆t) ≈
∫
P̂ (k, t) ei [k·x+V (x,k) |k|∆t] dk , (9)

or

P (x, t+ ∆t) + P (x, t−∆t) ≈ 2

∫
P̂ (k, t) eik·x cos [V (x,k) |k|∆t] dk . (10)

In rough velocity models, where the gradient ∇V does not exist, one can attempt
to solve the eikonal equation 3 numerically or to apply approximations other than
the Taylor expansion (5). In the examples of this paper, we used only the φ1 term.

Note that the approximations that we use, starting from equation (1), are focused
primarily on the phase of wave propagation. As such, they are appropriate for seismic
migration but not necessarily for accurate seismic modeling, which may require taking
account of amplitude effects caused by variable density and other elastic phenomena.

The computational cost for a straightforward application of equation (1) is O(N2
x),

where Nx is the total size of the three-dimensional x grid. Even for modest-size
problems, this cost is prohibitively expensive. In the next section, we describe an
algorithm that reduces the cost to O(M Nx logNx), where M is a small number.

LOWRANK APPROXIMATION

The key idea of the lowrank decomposition is decomposing the wave extrapolation
matrix

W (x,k) = ei [φ(x,k,∆t)−k·x] (11)
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for a fixed ∆t into a separated representation

W (x,k) ≈
M∑
m=1

N∑
n=1

W (x,km)amnW (xn,k). (12)

Representation (12) speeds up the computation of P (x, t+ ∆t) since

P (x, t+ ∆t) =

∫
eixkW (x,k)P̂ (k, t)dk

≈
M∑
m=1

W (x,km)

(
N∑
n=1

amn

(∫
eixkW (xn,k)P̂ (k, t)dk

))
. (13)

The evaluation of the last formula is effectively equivalent to applying N inverse Fast
Fourier Transforms. Physically, a separable lowrank approximation amounts to se-
lecting a set of N representative spatial locations and M representative wavenumbers.

In order to discuss the construction of approximation (12), let us view it as a
matrix decomposition problem

W ≈W1 AW2 (14)

where W is the Nx×Nx matrix with entries W (x,k), W1 is the submatrix of W that
consists of the columns associated with {km}, W2 is the submatrix that consists of the
rows associated with {xn}, and A = {amn}. In practice, we find that the matrix W
has a low rank separated representation provided that ∆t is sufficiently small, which,
in the case of smooth models, can be partially explained by the separation of terms in
the Taylor series 5. Let ε be a prescribed accuracy of this separated representation,
and rε be the numerical rank of W. The construction of the separated representation
in equation (14) follows the method of Engquist and Ying (2007, 2009) and is detailed
in the appendix. The main observation is that the columns of W1 and the rows of W2

should span the column space and row space of W, respectively, as well as possible.
The algorithm for computing (14) takes the following steps:

1. Pick a uniformly random set S of β · rε columns of W where β is chosen to be
3 or 4 in practice. Perform the pivoted QR factorization to (W(:, S))∗ (Golub
and Van Loan 1996). The first rε pivoted columns correspond to rε rows of the
matrix W(:, S). Define W1 to be the submatrix of W that consists of these
rows and set x1, . . . ,xN with n = rε to be the corresponding x values of these
rows.

2. Pick a uniformly random set T of β · rε rows of W and perform the pivoted QR
factorization to W(T, :). Define W2 to be the submatrix of W that consists of
these columns and set k1, . . . ,kM with m = rε to be the corresponding k values
of these columns.

3. Set the middle matrix A = W†(xn,km)1≤n≤N,1≤m≤M where † stands for the
pseudoinverse.



Fomel, Ying, & Song 5 Lowrank wave extrapolation

4. Combining the result of the previous three steps gives the required separated
representation W ≈W1 AW2.

The algorithm does not require, at any step, access to the full matrix W, only to its
selected rows and columns. Once the decomposition is complete, it can be used at
every time step during the wave extrapolation process. In multiple-core implementa-
tions, the matrix operations in equation (12) are easy to parallelize. The algorithm
details are outlined in the appendix.

The cost of the algorithm is O(M Nx logNx) operations per time step, where
Nx logNx refers to the cost of the Fourier transform. In comparison, the cost of
finite-difference wave extrapolation is O(LNx), where L is the size of the finite-
difference stencil. Song et al. (2011) present an application of the proposed lowrank
approximation algorithm for devising accurate finite-different schemes. There is a
natural trade-off in the selection of M : larger values lead to a more accurate wave
representation but require a longer computational time. In the examples of the next
section, we select these parameters based on an estimate of the approximation ac-
curacy and generally aiming for the relative accuracy of 10−4. The resulting M is
typically smaller than the number of Fourier transforms required for pseudo-spectral
algorithms such as pseudo-spectral implementations of the rapid expansion method
(Pestana and Stoffa 2011).

EXAMPLES

We start with a simple 1-D example. The 1-D velocity model contains a linear increase
in velocity, from 1 km/s to 2.275 km/s. The extrapolation matrix, 2 (cos [V (x) |k|∆t]−
1), or pseudo-Laplacian in the terminology of Etgen and Brandsberg-Dahl (2009), for
the time step ∆t = 0.001 s is plotted in Figure 1a. Its lowrank approximation is
shown in Figure 1b and corresponds to N = M = 2. The x locations selected by
the algorithm correspond to velocities of 1.59 and 2.275 km/s. The wavenumbers
selected by the algorithm correspond to the Nyquist frequency and 0.7 of the Nyquist
frequency. The approximation error is shown in Figure 1c. The relative error does not
exceed 0.34%. Such a small approximation error results in accurate wave extrapola-
tion, which is illustrated in Figure 2. The extrapolated wavefield shows a negligible
error in wave amplitudes, as demonstrated in Figure 2c.

Our next example (Figures 3 and 4) corresponds to wave extrapolation in a 2-D
smoothly variable isotropic velocity field. As shown by Song and Fomel (2011), the
classic finite-difference method (second-order in time, fourth-order in space) tends
to exhibit dispersion artifacts with the chosen model size and extrapolation step,
while spectral methods exhibit high accuracy. As yet another spectral method, the
lowrank approximation is highly accurate. The wavefield snapshot, shown in Fig-
ures 3b and 4b, is free from dispersion artifacts and demonstrates high accuracy.
The approximation rank decomposition in this case is N = M = 2, with the ex-
pected error of less than 10−4. In our implementation, the CPU time for finding the
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a b

c

Figure 1: Wave extrapolation matrix for 1-D wave propagation with linearly increas-
ing velocity (a), its lowrank approximation (b), and Approximation error (c).
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a b

c

Figure 2: (a) 1-D wave extrapolation using the exact extrapolation symbol. (b) 1-D
wave extrapolation using lowrank approximation. (c) Difference between (a) and (b),
with the scale amplified 10 times compared to (a) and (b).
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a b

Figure 3: Wavefield snapshot in a smooth velocity model computed using (a) fourth-
order finite-difference method and (b) lowrank approximation. The velocity model is
v(x, z) = 550 + 0.00015 (x − 800)2 + 0.001 (z − 500)2. The wave source is a point-
source Ricker wavelet, located in the middle of the model. The finite-difference result
exhibits dispersion artifacts while the result of the lowrank approximation, similarly
to that of the FFD method, is dispersion-free.

a b

Figure 4: Horizontal slices through wavefield snapshots in Figure 3
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lowrank approximation was 2.45 s, the single-processor CPU time for extrapolation
for 2500 time steps was 101.88 s or 2.2 times slower than the corresponding time for
the finite-difference extrapolation (46.11 s).

a b

Figure 5: Wavefield snapshot in a simple two-layer velocity model using (a) fourth-
order finite-difference method and (b) lowrank approximation. The upper-layer ve-
locity is 1500 m/s, and the bottom-layer velocity is 4500 m/s. The finite-difference
result exhibits clearly visible dispersion artifacts while the result of the lowrank ap-
proximation is dispersion-free.

To show that the same effect takes place in case of rough velocity model, we use
first a simple two-layer velocity model, similar to the one used by Fowler et al. (2010).
The difference between a dispersion-infested result of the classic finite-difference
method (second-order in time, fourth-order in space) and a dispersion-free result
of the lowrank approximation is clearly visible in Figure 5. The time step was 2 ms,
which corresponded to the approximation rank of 3. In our implementation, the CPU
time for finding the lowrank approximation was 2.69 s, the single-processor CPU time
for extrapolation for 601 time steps was 19.76 s or 2.48 times slower than the corre-
sponding time for the finite-difference extrapolation (7.97 s). At larger time steps, the
finite-difference method in this model becomes unstable, while the lowrank method
remains stable but requires a higher rank.

Next, we move to isotropic wave extrapolation in a complex 2-D velocity field.
Figure 6 shows a portion of the BP velocity model (Billette and Brandsberg-Dahl
2005), containing a salt body. The wavefield snapshot (shown in Figure 7) confirms
the ability of our method to handle complex models and sharp velocity variations.
The lowrank decomposition in this case corresponds to N = M = 3, with the expected
error of less than 10−7. Increasing the time step size ∆t does not break the algorithm
but increases the rank of the approximation and correspondingly the number of the
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Figure 6: Portion of BP-2004 synthetic isotropic velocity model.
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Figure 7: Wavefield snapshot for the velocity model shown in Figure 6.
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required Fourier transforms. For example, increasing ∆t from 1 ms to 5 ms leads to
N = M = 5.

Figure 8: SEG/EAGE 3-D salt model.

Our next example is isotropic wave extrapolation in a 3-D complex velocity field:
the SEG/EAGE salt model (Aminzadeh et al. 1997) shown in Figure 8. A dispersion-
free wavefield snapshot is shown in Figure 9. The lowrank decomposition used N =
M = 2, with the expected error of 10−5.

Finally, we illustrate wave propagation in a complex anisotropic model. The model
is a 2007 anisotropic benchmark dataset from BP∗. It exhibits a strong TTI (tilted
transverse isotropy) with a variable tilt of the symmetry axis (Figure 10). A wavefield
snapshot is shown in Figure ??. Because of the complexity of the wave propagation
patterns, the lowrank decomposition took N = M = 10 in this case and required 10
FFTs per time step. In a TTI medium, the phase velocity V (x,k) from equation (10)
can be expressed with the help of the acoustic approximation (Alkhalifah 1998 2000;

∗The dataset was created by Hemang Shah and is provided at http://software.seg.org/ cour-
tesy of BP Exploration Operation Company Limited.

http://software.seg.org/
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Figure 9: Snapshot of a point-source wavefield propagating in the SEG/EAGE 3-D
salt model.
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a b

c d

Figure 10: Portion of BP-2007 anisotropic benchmark model. (a) Velocity along the
axis of symmetry. (b) Velocity perpendicular to the axis of symmetry. (c) Anellipticity
parameter η. (d) Tilt of the symmetry axis.

Figure 11: Wavefield snapshot for the velocity model shown in Figure 10.
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Fomel 2004)

V (x,k) =

√
1

2
(v2
x k̂

2
x + v2

z k̂
2
z) +

1

2

√
(v2
x k̂

2
x + v2

z k̂
2
z)

2 − 8η

1 + 2η
v2
xv

2
z k̂

2
x k̂

2
z , (15)

where vx is the P-wave phase velocity in the symmetry plane, vz is the P-wave phase
velocity in the direction normal to the symmetry plane, η is the anellipticity parameter
(Alkhalifah and Tsvankin 1995), and k̂x and k̂z stand for the wavenumbers evaluated
in a rotated coordinate system aligned with the symmetry axis:

k̂x = kx cos θ + kz sin θ

k̂z = kz cos θ − kx sin θ ,
(16)

where θ is the tilt angle measured with respect to horizontal.

CONCLUSIONS

We have presented a novel algorithm for wave extrapolation in heterogeneous and
anisotropic media. The algorithm is based on a lowrank approximation of the ex-
trapolation symbol. It reduces the cost of extrapolation to that of a small number
of FFT operations per time step, which correspond to the approximation rank. The
algorithm has a high, spectral accuracy. In that sense, it is comparable with a number
of other recently proposed FFT-based methods. Its advantage is a direct control on
the accuracy-efficiency trade-off by controlling the rank of the approximation and the
corresponding approximation error. We propose to incorporate the lowrank extrapo-
lation algorithm in seismic imaging by reverse-time migration.
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details.
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Let Nx be the number of samples both in space and wavenumber. Let us de-
note the samples in the spatial domain by x = {x1, . . . , xNx} and the ones in the
Fourier domain by k = {k1, . . . , kNx}. The elements of the interaction matrix W
from equation (11) are then defined as

Wij = eı[φ(xi,kj ,∆t]−xi·kj ], 1 ≤ i, j ≤ Nx. (A-1)

Here we describe an algorithm by Engquist and Ying (2009) that generates, in a
time linear with respect to Nx, an approximate factorization of W of rank r in the
following form

W ≈ UMV∗ , (A-2)

where U consists of r selected columns from W, M is a matrix of size r × r and V∗

consists of r selected rows from W.

The first question is: which columns of W shall one pick for the matrix U? It
has been shown by Goreinov et al. (1997) and Gu and Eisenstat (1996) that the r-
dimensional volume spanned by these columns should be the maximum or close to the
maximum among all possible choices of r columns from W. More precisely, suppose
W = [w1, . . . , wNx ] is a column partitioning of W. Then one aims to find {j1, . . . , jr}
such that

{j1, . . . , jr} = argmin{j1,...,jr}volr(wj1 , . . . , wjr). (A-3)

However, finding a set of r columns with almost the maximum r-dimensional volume
is a computationally difficult problem due to the following two reasons. First, the
length of the vectors N is typically very large for three dimensional problems, hence
manipulating these vectors can be costly. Second, the number of the vectors Nx is also
large. A exhaustive search over all possible choices of r vectors to find the one with
the maximum volume is prohibitive expensive, so one needs to find a more practical
approach.

In order to overcome the problem associated with long vectors, the first idea is to
project to a lower dimensional space and search for the set of vectors with maximum
volume among the projected vectors. However, one needs to ensure that the volume
is roughly preserved after the projection so that the set of vectors with the maximum
projected volume also has a near-maximum volume in the original space. One of
the most celebrated theorems in high dimensional geometry and probability is the
following Johnson-Lindenstrauss lemma (Johnson and Lindenstrauss 1984).

Theorem 1. Let v1, . . . , vN be a set of N vectors in Rd. Let T be a randomly generated
subspace of dimension t = O(logN/ε2) and use PT to denote the orthogonal projection
onto T . Then with high probability,

(1− ε)‖vi − vj‖ ≤
√
d

t
‖PTvi − PTvj‖ ≤ (1 + ε)‖vi − vj‖

for 1 ≤ i, j ≤ N .
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This theorem essentially says that projecting to a subspace of dimension O(logN)
preserves the pairwise distance between N arbitrary vectors. There is an immediate
generalization of this theorem due to Magen (2002), formulated slightly differently
for our purpose.

Theorem 2. Let v1, . . . , vN be a set of N vectors in Rd. Let T be a randomly gen-
erated subspace of dimension t = O(r3 logN/ε2) and use PT to denote the orthogonal
projection onto T . Then with high probability,

(1− ε) · volr(vi1 , . . . , vir) ≤
(
d

t

)r/2
volr(PTvi1 , . . . , PTvir) ≤ (1 + ε) · volr(vi1 , . . . , vir)

for any {i1, . . . , ir} ⊂ {1, . . . , N}.

The main step of the proof is to bound the singular values of a random matrix
between (1 − ε)1/r and (1 + ε)1/r (after a uniform scaling) and this ensures that the
r-dimensional volume is preserved within a factor of (1 − ε) and (1 + ε). In order
to obtain this bound on the singular values, we need t to be O(r3 logN). However,
bounding the singular values is only one way to bound the volume, hence it is possible
to improve the dependence of t on r. In fact, in practice, we observe that t only needs
to scale like O(r logN).

Given a generic subspace T of dimension t, computing the projections PTw1, . . . , PTwN
takes O(tN2) steps. Recall that our goal is to find an algorithm with linear complex-
ity, hence this is still too costly. In order to reduce the cost of the random projection,
the second idea of our approach is to randomly choose t coordinates and then project
(or restrict) each vector only to these coordinates. This is a projection with much less
randomness but one that is much more efficient to apply. Computationally, this is
equivalent to restricting W to t randomly selected rows. We do not yet have a theo-
rem regarding the volume for this projection. However, it preserves the r-dimensional
volume very well for the matrix W and this is in fact due to the oscillatory nature of
the columns of W. We denote the resulting vectors by {w̃1, . . . , w̃Nx}.

The next task is to find a set of columns {j1, . . . , jr} so that the volume volr(w̃j1 , . . . , w̃jr)
is nearly maximum. As we mentioned earlier, exhaustive search is too costly. To over-
come this, the third idea is to use the following pivoted QR algorithm (or pivoted
Gram-Schmidt process) to find the r columns.

1: for s = 1, . . . , r do
2: Find js among {1, . . . , N} \ j1, . . . , js−1 such that w̃js has the largest norm
3: Orthogonalize the vectors w̃j for j ∈ {1, . . . , N}\j1, . . . , js with w̃js and update

them
4: end for
5: {j1, . . . , jr} is the column set required

Once the column set is found, we set U = [wj1 , . . . ,wjr ].

In order to identify V∗, one needs to find a set of r rows of W that has an almost
maximum volume. To do that, we repeat the same steps now to W∗. More precisely,



Fomel, Ying, & Song 18 Lowrank wave extrapolation

let

W =

 m1
...

mNx

 (A-4)

be the row partitioning of the matrix W. The algorithm takes the following steps:

1: Select uniform randomly a set of t columns and obtain an Nx × t tall matrix
2: Perform pivoted QR algorithm on the rows of this tall matrix and denote the first
r rows selected by {i1, . . . , ir}

3: The matrix V∗ is

V∗ =

mi1
...

mir

 . (A-5)

Once both U and V∗ are identified, the last task is to compute the r × r matrix
M for W ≈ UMV∗. Minimizing

min
M
‖W −UMV∗‖F (A-6)

yeilds M = (U)†W(V∗)
†

where † stands for the pseudo-inverse. However, this formula
requires taking matrix product with W, which takesO(tN2

x) steps. In order to achieve
linear scaling, the fourth idea of our approach is to select randomly a set of t rows A
and a set of t columns B and minimize

min
M
‖W(A,B)−U(A, :)MV(B, :)∗‖F . (A-7)

The solution for this problem is

M = (U(A, :))†W(A,B) (V(B, :)∗)† . (A-8)

Let us now discuss the overall cost of this algorithm. Random sampling of t rows
and t columns of the matrix W clearly takes O(tNx) steps. Pivoted QR factorization
on the projected columns {w̃1, . . . , w̃Nx} takes O(t2Nx) steps and the cost for for the
pivoted QR factorization on the projected rows. Finally, performing pseudo-inverses
takes O(t3) steps. Therefore, the overall cost of the algorithm is O(tNx)+O(t2Nx)+
O(t3) = O(t2Nx). As we mentioned earlier, in practice t = O(r logNx). Hence, the
overall cost is linear in Nx.
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