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ABSTRACT

Azimuthal anisotropy or lateral velocity variations cause azimuthal variations in
moveout velocity which can lead to seismic image degradation if not properly
handled. In cases where apparent azimuthally anisotropic moveout is present,
a single picked velocity is inadequate to flatten an event on a 3D CMP gather.
Conventional velocity analysis techniques require a significant amount of time and
effort, especially in areas where apparent anisotropy is observed. We propose
a velocity-independent imaging approach to perform an elliptically anisotropic
moveout correction in 3D. The velocity-independent approach relies on volumetric
local traveltime slopes rather than aggregate velocities, and therefore provides an
azimuthally flexible description of traveltime geometries throughout the gather.
We derive theoretical expressions for extracting the moveout slowness matrix
and the angle between the symmetry and acquisition axes as volumetric local
attributes. A practical inversion scheme to extract the same parameters is also
developed. These parameters are used to solve for moveout slowness as a function
of azimuth. Tests on a synthetic CMP gather show accurate results for the
automatic moveout correction and the inversion scheme. A field data example
from West Texas illustrates the application of the automatic moveout correction
as a residual moveout.

INTRODUCTION

Common geological occurrences such as dipping interfaces, lateral velocity variations,
or HTI media can lead to real or apparent azimuthal anisotropy, in which case the
P-wave moveout velocity becomes elliptically dependent on azimuth (Grechka and
Tsvankin, 1998). The symmetry axes of apparent azimuthal anisotropy often cor-
respond to geologically meaningful parameters such as the strike and dip directions
of the reflector (Levin, 1985),the directions of tectonic stress (Sicking et al., 2007),
the preferred orientation of vertical fractures (Crampin, 1984), or any combination
of these factors. Failure to account for azimuthal velocity variations often leads to
stack degradation, improper time-to-depth conversion, inaccurate AVO/AVOA, and
overall poorer image results (Williams and Jenner, 2002). Sicking and Nelan (2008)
and Treadgold et al. (2008) demonstrate that migration algorithms which can han-
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dle azimuthal variations in the velocity model can visibly improve seismic imaging
results.

Conventional manual velocity analysis procedures take up a significant part of the
time needed to process seismic data. Even with semi-automated picking tools, this
phase of a typical processing flow alone may take weeks or even months for modern
3D data sets. Accurate automated traveltime picking algorithms are the main tools
for modern velocity analysis, and have greatly reduced the time and manual work
required to hand-pick velocities (Siliqi et al., 2003). However, these tools still require
significant manual inspection and editing for quality control.

The conventional production processing flow does not include picking azimuthally-
dependent velocities, but two approaches are commonly used to handle and character-
ize azimuthal variations in velocity. The first, and historically more popular approach,
is to sort CMP gathers into azimuth sectors, and then perform isotropic velocity anal-
ysis, processing, and migration on each sector. The individual moveout parameters
from all sectors are plotted together, and then fit with a sinusoid to characterize the
principal moveout directions and the percentage of anisotropy. Grechka et al. (1999)
describe another approach, where NMO is first performed with a smooth global ve-
locity model. If apparent anisotropy is detected, trace-to-trace traveltime shifts are
estimated automatically, and the traveltime surface is fit with an ellipse characterized
by the moveout slowness matrix W. The second approach has become more popular
in production because of its robustness, and in a case-study comparing the two, Lynn
(2007) provides an example where the non-sectoring approach yielded a more reliable
azimuthal velocity model.

The concept of velocity-independent imaging (Ottolini, 1983) is attractive be-
cause it can be very efficient when compared the time and manual work required to
hand-pick velocities (Fomel, 2007). The underlying strategy of velocity-independent
imaging relies on measuring traveltime slopes throughout the data set rather than
hyperbolic traveltimes or velocities themselves (Wolf et al., 2004). Fomel (2002)
demonstrates that plane-wave destruction filters provide an automated and effective
way to measure local slopes in a seismic volume. Measured slopes can then be used to
automate any common time-domain imaging step (Fomel, 2007). Previous work con-
cerning automatic moveout corrections does not extend to the 3D case. In doing so
here, we demonstrate that the azimuthal flexibility of automatic moveout correction
in 3D is especially useful in the presence of real or apparent azimuthal anisotropy.

Rather than using a single picked velocity profile to apply the NMO correction,
using the local slopes of a given 3D reflection event allows the event to be flattened
regardless of azimuthal variations in NMO velocity. In practice, these slopes can be
measured automatically throughout the volume, so no traveltime surfaces need to
be picked. The velocity-independent approach can still be used to extract moveout
or interval velocities throughout the data set as data attributes (Fomel, 2007). Our
method also suggests that, by measuring local curvatures throughout the seismic
data volume, the orientation of the symmetry axes can automatically be estimated
with respect to the acquisition coordinates. We present theoretical expressions for
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azimuthal anisotropy moveout parameters as volumetric attributes, and demonstrate
a practical inversion scheme for the same parameters using the velocity-independent
approach. Synthetic and field examples are used to validate our proposed method
and show the variety of potential applications.

THEORY

Following (Grechka and Tsvankin, 1998), the elliptical NMO equation in 3D can be
written with the help of a truncated Taylor series expansion as,

t0 =
√
t2 − (Wxx2 +Wyy2 + 2Wxyxy), (1)

where t is the event arrival time, t0 is the moveout corrected time, and x and y are
the components of full offset in the x and y survey directions, respectively. Wx and
Wy are the conventionally-measured moveout slownesses squared values (along the
same survey coordinates). Equation 1 describes NMO with elliptical velocity, where
the third parameter, Wxy, arises from observing the ellipse from rotated coordinates.
In practice, one can perform elliptically anisotropic NMO using conventional velocity
picking in the inline and crossline directions, but the principal directions of moveout
must also be estimated. Rewriting equation 1 as a matrix-vector multiplication be-
tween the offset vector and the slowness matrix W allows one to solve for the angle
between the acquisition coordinates and the medium symmetry axes, denoted as α
here. This can be done either by finding the eigenvectors of the system (Grechka and
Tsvankin, 1998), or by using geometric arguments and well-known relations between
the formulas for a rotated ellipse and its unrotated equivalent (Weisstein, 2009). Us-
ing the latter approach gives an expression for α in terms of conventional slowness
parameters,

α =
1

2
tan−1

(
2Wxy

Wx −Wy

)
. (2)

In this expression, α is the angle from a survey axis measured counter-clockwise to-
ward the nearest symmetry axis. If Wx is equal to Wy, then the arc-tangent argument
goes to infinity, corresponding to α = 45◦. Although equation 2 is a straightforward
way of finding the coordinate rotation angle, finding the eigenvalues and eigenvectors
allows one to resolve between the fast and slow principal moveout directions. The
eigenvalues λ1 and λ2 of the slowness matrix,

W =

(
Wx Wxy

Wxy Wy

)
, (3)

can be found following Grechka and Tsvankin (1998). Rewritten here in our notation,
they demonstrate how the eigenvalues,
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Figure 1: Elliptic NMO velocity depends on the natural symmetry axes (a-b), not the
acquisition coordinates (x-y). The angle α describes the counter-clockwise rotation
between the two coordinate frames.
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λ1,2 =
1

2

[
Wx +Wy ±

√
(Wx −Wy)2 + 4W 2

xy

]
, (4)

can be used together with α to solve for the NMO slowness S as a function of source-
receiver azimuth θ:

S2
nmo(θ) = λ1 cos2(θ − α) + λ2 sin2(θ − α). (5)

Since equation 1 describes the predicted hyperbolic traveltime curve on a CMP
gather for a variety of cases where either real or apparent elliptical anisotropy may
be present, the local slope of an event on an inline or crossline CMP gather can be
related to the conventional moveout slowness parameters by taking the derivative of
1 with respect to x and y. Ignoring higher order terms and assuming the parameters
vary slowly along x and y, gives a first-order approximation of how the measured
slopes relate to conventional moveout parameters:

px(t, x, y) =
∂t

∂x
=
Wxx+Wxyy

t
, (6)

py(t, x, y) =
∂t

∂y
=
Wyy +Wxyx

t
. (7)

By substitution back into 1, we arrive at the velocity-independent expression for 3D
elliptical moveout in terms of local slopes:

t0 =
√
t2 − t (pxx+ pyy). (8)

Notice that only two parameters (px and py) must be measured to completely predict
the NMO corrected time. More importantly, these parameters can be measured au-
tomatically using a local slope estimation algorithm, such as plane-wave destruction
(Fomel, 2002). Equation 8 is a 3D extension for the 2D equation from Ottolini (1983).

Automated processes allow one to save time spent on a project, but it may seem
that the insight and information gained during a more interactive conventional pro-
cessing flow would be lost. A significant part of production velocity analysis involves
picking or examining the velocity model directly, which provides an early and intu-
itive link between the seismic data and the subsurface geology. The velocity model
and anisotropy information are themselves invaluable sources of geologic information.
They also control the positioning of events in the final image, so an ability to extract
these parameters is desirable.

The relation between local slopes and moveout velocity has been documented
for the 2D case (Ottolini, 1983; Wolf et al., 2004; Fomel, 2007). In the 3D case
where apparent azimuthal anisotropy is present, at least three conventional slowness
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or velocity-like values are needed to characterize moveout (Wx, Wy, and Wxy from
equation 1). Although equation 8 suggests they are not necessary for moveout in
terms of local slopes, these values can be used to characterize anisotropy, and may
also be useful for other subsequent processing. Simply rearranging equations 6 and 7
gives expressions for Wx and Wy:

Wx =
tpx −Wxyy

x
, (9)

and,

Wy =
tpy −Wxyx

y
. (10)

Both of these parameters require an estimate of Wxy. A first-order approximation of
Wxy can be found by differentiating equation 6 with respect to y or equation 7 with
respect to x:

Wxy = t
∂px
∂y

+ pxpy = t
∂py
∂x

+ pxpy = tpxy + pxpy. (11)

Since slopes are measured as a local attribute, the inline and crossline local slopes
comprise data volumes with the same dimensions and coordinates as the input CMP.
Applying a 1D derivative filter to these volumes allows one to obtain either mixed-
derivative in equation 11, and solve for the apparent anisotropy angle α, using equa-
tion 1. This angle can also be expressed in terms of local slopes. Combining equations
9, 10, and 11 yields,

Wx −Wy =
t

xy
[ypx − xpy + (pxy + (x2 − y2)

pxpy
t

)]. (12)

Now everything needed to express α independently of velocity is found in equations
11 and 12. Combining them with equation 2 gives,

α(t, x, y) =
1

2
tan−1

(
2xy(tpxy + pxpy)

t(ypx − xpy) + (tpxy + pxpy)(x2 − y2)

)
. (13)

Implementing equation 13 creates an attribute for each input data sample describing
the counter-clockwise azimuthal angle between the symmetry coordinates and the
acquisition coordinates. Applying NMO to this attribute volume yields α(t0, x, y),
which should then theoretically be constant at each time-slice if the moveout were
exactly described by equation 1.

Finding local estimates of slowness and anisotropy parameters using equations
9-13 remains at this point only an interesting theoretical idea. A more robust and
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practical approach to extracting velocity and anisotropy parameters is to exploit
the shear number of volumetric slope measurements made to perform the velocity-
independent NMO correction. For a given CMP with dimensions (nx × ny × nt), the
NMO correction applies a shift of time-squared,

t∆(t0, x, y) = t2(x, y) − t20(x, y), (14)

which can be automatically computed for every output coordinate using equation (8)
and stored as another volume of the same dimensions. Once NMO is applied, the
time axis of the CMP gather represents t0, so the slowness matrix W and α should
each be constant for a given time value. Each time-slice from either the data or one of
the attribute volumes can be viewed as an (nx×ny) matrix, which can be re-indexed
into a vector of length (nx × ny). If the x and y indexes from the time-slice are i
and j respectively, then the value from position (i, j) in the matrix is mapped to
the k = i + jnx position in the vector. Using this notation, a highly overdetermined
problem follows from writing equation 1 as a matrix-vector multiplication:

t∆ = Xw. (15)

where the kth element of t∆ is,

t∆k = t∆(t0, xi, yj), (16)

the kth row of X is given by the vector,

xk =
(
x2
i y2

j 2xiyj
)
, (17)

and

w =

Wx

Wy

Wxy

 . (18)

Linear system 15 has (nx × ny) equations with only three unknowns. By solving 15
for each time-slice in the output CMP, we construct the slowness matrix W(t0), and
use it with equations 13, 4, and 5 to extract the coordinate rotation angle α(t0) and
the NMO slowness as a function of azimuth, S(t0, θ).

EXAMPLES

We provide two examples to illustrate the performance of our approach. In the first
example, we consider a simple 3D synthetic CMP gather (Figure 2a) with four events,
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a b

Figure 2: (a.) A synthetic 3D CMP gather with four events of varying apparent
elliptical anisotropy. The three panels in the display show a time-slice view (upper
square panel), a crossline view (central panel), and an inline view (right panel) of
the same volume. (b.) An isotropic NMO correction using a picked velocity function
appropriate for flattening certain events. At best, isotropic NMO can flatten either
the inline or crossline directions well, but there is no single velocity function that will
flatten both.

each with a different degree of apparent azimuthal anisotropy. The synthetic CMP
in Figure 2a was created by first specifying the moveout slowness matrix, W for
each event. Each of the four events was modeled individually by applying inverse
3D NMO to a flat reflection based on equation 1. The exact parameters used to
model the four events are specified in Table 1. The four events were then added
together into a single CMP gather with a small amount of random noise (10% of
the signal amplitude). The result of this approach differs from real cases in that the
traveltime surface for each of the events is completely independent from overlying
events. However, this approach allows us to specify the exact moveout slownesses of
each the events without additional work.

Event Moveout Parameters
Event t0 (s) Wx(s2/km2) Wy(s

2/km2) Wxy(s
2/km2) α(◦)

A 0.59 0.14 0.16 -0.01 14.0
B 1.53 0.30 0.30 -0.04 -44.3
C 2.51 0.32 0.26 -0.03 -21.8
D 3.41 0.24 0.25 -0.005 26.57

Table 1: Moveout parameters used for events in Figure 2a.

Conventional velocity semblance scans may yield multiple peaks for the same event
when apparent azimuthal anisotropy is present. One must interpret the correct veloc-
ity in these areas, which can lead to inconsistent results between different processing
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a b

c

Figure 3: The (a.) inline and (b.) crossline slopes of the CMP gather from Figure 2a.
(c.) These slopes are used with equation 8 to automatically perform the proposed
elliptically anisotropic moveout correction. All four events are flattened perfectly
where the slopes are not aliased.
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geophysicists, since the cause of multiple semblance panel peaks can be ambiguous
(multiples, noise, anisotropy, etc.). Resolving this ambiguity properly can add even
more time and work to the production approach. Figure 2b shows a possible result
of picking a single velocity profile which flattens certain events in either the inline
or crossline view. For a root-mean-square velocity model, if an intermediate value
is chosen for each event, both directions are flattened poorly. Event B has a partic-
ularly difficult scenario for the production approach; the symmetry axes are nearly
45◦ from the acquisition axes, which makes the apparent moveout velocities along the
x and y axes practically equal. A production velocity analysis is likely to not even
detect the anisotropy in this case, because viewed from the acquisition axes, event B
appears isotropic. The time-slice panel of Figure 2b reveals the poor performance of
the isotropic NMO correction along other source-receiver azimuths of event B.

By measuring the local slopes of an input CMP gather as a volumetric attribute,
the geometry of each traveltime surface is captured, even away from the x and y
acquisition axes. Figures 3a and 3b show sections of the automatically measured
inline and crossline slope volumes for the CMP from Figure 2a. The time-slice views
clarify that the slopes are measured in the x and y directions throughout the volume,
not just along the x and y zero-offset axes. Comparison of the slope volumes with
Figure 2a also shows that there are clearly non-zero slopes in areas without data. No
initial slope fields were used to get these measurements, but the results of the plane-
wave destruction filter application were regularized with a smoothing constraint by
using shaping regularization (Fomel, 2007). This constraint is enforced to help ensure
that the moveout correction varies both spatially and temporally in a stable fashion.
In Figure 3c, the velocity-independent elliptically anisotropic moveout correction is
applied using these slopes, and all of the events are flattened well in both directions.
The time-slice view of Figure 3c now shows the overall superior performance of the
velocity-independent correction, but also reveals its limitations. As events become
steep relative to the trace spacing, local slope measurements can be aliased. Towards
the corners of the example gather, the slopes become too steep to be measured reliably,
and in these areas, the automatic moveout correction performs poorly. In field data,
crossline trace spacing is often much coarser than inline spacing, which may lead to
similar aliasing problems. However, the effects of aliasing can often be mitigated
with a few simple extra steps. By first applying a constant velocity isotropic NMO
correction to the data before measuring slopes, the events will be flatter and less likely
to have aliased slopes at far offsets. An inverse NMO correction using the constant
velocity can then be applied to the measured slopes. The constant velocity can then
be converted to px and py components and added to the slope measurements to obtain
the unaliased slope fields of the input CMP gather.

Another perspective of the same test is shown in Figures 4a and 4b. The traces
from the synthetic CMP gather have been binned into offset and azimuth coordinates
to display the familiar sinusoidal signature of azimuthal traveltime variations. The
various squared traveltime shifts (t∆ values) applied by the automatic NMO correc-
tion were computed during implementation using equation 8, and then stored as a
volumetric attribute. For each of the events, time-slices of this volume are shown in
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Figures 5a-5d. The elliptical variation is clearly displayed for events A, B, and C, but
the subtle variation for event D makes it difficult to detect the apparent anisotropy.
Each time-slice from the same volume was re-indexed into a vector following the
scheme described in the previous section, and then fed into a least-squares solver for
equation 15 to yield W(t0). The results of this inversion are displayed in Figures 6a-
6b. At the times of the events, all three parameters have been extracted accurately.
The shaping regularization used to create smooth slope fields also leads to similar
smoothness in the W estimates. Because of the random noise in the synthetic data,
slope measurements away from events are also random. The best-fit surface through
these random slopes tends to be a flat plane, which is characterized on a CMP gather
by zero slowness, causing the Wx and Wy estimates to tend toward zero between
events. It is important to note that the values shown in Figures 6a-6d each rely on
the accuracy of the NMO shifts computed at the corresponding value of t0. Only the
sparse times of this synthetic CMP gather with data have meaningful slope estimates
and therefore meaningful W and α estimates.

a b

Figure 4: (a.) A common offset (0.75 km) display of CMP from Figure 2a with
azimuth on the horizontal axis. (b.) The same traces after the automatic moveout
correction. All events are shifted up to their appropriate t0 and flattened.

The extracted moveout slowness matrices W(t0) are used with equation 2 to esti-
mate α(t0). The results of estimating α(t0) are displayed in Figure 6d, and the values
at the times of each event are accurate. We conclude this example by solving for
NMO slowness-squared as using α(t0) and the corresponding eigenvalues at each t0
with equation 5. These results, shown in Figures 7a-7d show that for all four events,
the angle of anisotropy is detected. From this volume, the principal moveout direc-
tions are readily determined, the fast and slow axes are resolved, and the apparent
anisotropy (the ratio or difference of Vfast and Vslow ) is measurable.
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a b

c d

Figure 5: Traveltime squared shifts (t∆(t0, x, y)) for each event. (a.) Event A. (b.)
Event B. (c.) Event C. (d.) Event D.

We next demonstrate a potential application of the automatic moveout correction
on a real data example. In this case, we apply the automatic elliptically anisotropic
moveout correction as a residual moveout correction. A subset of the McElroy data
set from West Texas was formed into a supergather seen in Figure 8. Figure ?? shows
a common offset (3.6-4.0 km) time-versus-azimuth display of the same data, where
azimuthal anisotropy is evident for several events. In Figure ??, the magnitude of the
local slope is shown for the initial data. The areas with higher slope values highlight
areas that were not ideally flattened by the prior isotropic NMO correction. The
region of the highest slopes along the top of the figure is due to the proximity of
the prior NMO mute at about 0.8 s. Figure ?? shows the results of applying two
iterations of the proposed moveout correction. Further iterations will continue to
flatten later events as distortions from overlying layers are removed. The events in
the results are already noticeably flatter, and will therefore produce a cleaner stack.

DISCUSSION

Many advancements have been made in semi-automated traveltime picking schemes
which have made the velocity analysis phase of a conventional seismic data processing
flow much more efficient. However, a great deal of time is still required to manually
check the quality of the assisted picking, and this remains as a time-consuming step
in the conventional processing flow, especially in 3D. A similar procedure can be used
for our velocity-independent approach. In production applications, the automatically
measured slope fields from a subset of CMP gathers should be inspected manually.



Burnett & Fomel 133D velocity-independent moveout correction

a b

c d

Figure 6: Elements of W(t0) inverted from t∆(t0, x, y) surfaces: (a.) Wx. (b.) Wy.
(c.) Wxy. (d.) Azimuth angle α(t0) computed from W(t0).
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a b

c d

Figure 7: Time-slice views of NMO slowness-squared values computed for each
event.(a.) Event A. (b.) Event B. (c.) Event C. (d.) Event D.

Figure 8: 3D view of a supergather from the McElroy data set, West Texas, US.
Although the data has been isotropically NMO corrected, the time-slice view shows
a subtle directional trend to the flatness of an event at 0.978 s.



Burnett & Fomel 153D velocity-independent moveout correction

a b

c

Figure 9: A time-versus-azimuth panel of traces for a range of offsets from 3.6-4.0
km from the McElroy data set. The central panel shows local slope magnitudes cor-
responding to the left input panel. The slope magnitude was computed as

√
p2
x + p2

y.
The same data after an automatic moveout correction has been applied as a residual
moveout correction is shown on the right.
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Slopes are very intuitive to understand and easy to compare to the input data. An
overlay or side-by-side display of the two, combined with the NMO performance
provide efficient and accurate quality control criteria.

Plane-wave destruction filters provide a truly automated approach to velocity
analysis, as they can be used without any user-selected input parameters. Here, we
have used the finite-difference plane-wave destructors, which, as described by Fomel
(2002), can be given a user-supplied initial estimate of the slope field. Providing an
initial slope estimate helps improve the efficiency of the slope-detection and can help
estimate conflicting slopes (Fomel, 2002). In all of the examples above, no initial
slope field was provided. The output slope fields are computed using smoothing regu-
larization, which helps make the moveout correction more robust, and provides a way
for the user to interact with the slope detection performance. If the seismic data is
particularly noisy, a more aggressive smoothing can help make a more consistent au-
tomatic NMO correction, while for clean data, less smoothing yields a better resolved
localized slope field.

We would like to comment here on the performance of the method for realis-
tic cases containing a stack of layers, each with a different orientation of azimuthal
anisotropy. The azimuthally-dependent traveltime variations caused by wave propa-
gation in the upper layers will be superimposed on the reflection events corresponding
to underlying layers. While inverting for NMO parameters is shown to be straight-
forward through the velocity-independent approach, solving for interval parameters
would require these effects to be unraveled through the use of layer-stripping (Hake,
1986) or a Dix-type inversion (Grechka et al., 1999; Grechka and Tsvankin, 2002).
If the effects from overlying layers distort later traveltime surfaces enough such that
they are no longer elliptically hyperbolic as suggested by equation 1, then the move-
out correction will not be complete for the entire section. However, as seen in the
second example in the previous section, the velocity-independent moveout method
can be used as a residual correction, with no changes to the procedure. The later
events with incomplete moveout correction can therefore be corrected with iterated
applications of the method. Another complication arises in the residual moveout case
though, if one wants to extract parameters such as the azimuth angle or moveout
slownesses. The equations presented here for parameter extraction were derived for
a single pass NMO correction; it remains for further work to extend the parameter
estimation methods to cases where residual moveout correction is necessary.

CONCLUSIONS

Measuring local slopes is a thorough and azimuthally flexible way to characterize
traveltime surface geometry, which, in the 3D case, provides useful information about
azimuthal variations in moveout velocity. We have demonstrated an application for
this feature in performing an elliptically anisotropic moveout correction in 3D. No
velocities are picked in order to perform this moveout correction, and since we use
plane-wave destruction filters to measure local slopes, the entire process is automated.
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Local moveout velocities can be calculated as a function of the local slopes, and
the azimuthal angle of anisotropy can be estimated locally if one measures the first
mixed-derivative of the traveltime surfaces at each point. By recording the traveltime
shifts applied by our automated method, we formulate a highly overdetermined linear
system to solve for moveout parameters as a function of time. This inversion scheme
was shown to be very accurate on a synthetic data example, but remains to be tested
on field data. The only practical limitation in the synthetic example comes from
steeply dipping events which introduce aliased slope measurements. Although this
type of aliasing can be mitigated to some extent with additional processing, further
testing will be required on typical field geometries with relatively coarse crossline
spacing.

Even in multi-layer cases, where conflicting azimuthal anisotropies are present,
the proposed moveout correction itself can be performed accurately and automati-
cally without velocity or parameter estimation. In these cases, the effective moveout
parameters can be estimated from our method. Extensions of this method following
an iterative scheme analogous to a layer-stripping or Dix-type inversion strategy may
provide a powerful option to automatically recover interval parameters as well.
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