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ABSTRACT

We propose a novel approach to attenuate random noise based on local signal-
and-noise orthogonalization. In this approach, we first remove noise using one of
the conventional denoising operators, and then apply a weighting operator to the
initially denoised section in order to predict the signal-leakage energy and retrieve
it from the initial noise section. The weighting operator is obtained by solving
a least-squares minimization problem via shaping regularization with a smooth-
ness constraint. Next, the initially denoised section and the retrieved signal are
combined to form the final denoised section. The proposed denoising approach
corresponds to orthogonalizing the initially denoised signal and noise in a local
manner. We evaluate denoising performance by using local similarity. In order to
test the orthogonalization property of the estimated signal and noise, we calculate
the local similarity map between the denoised signal section and removed noise
section. Low values of local similarity indicate a good orthogonalization and thus
a good denoising performance. Synthetic and field data examples demonstrate
the effectiveness of the proposed approach in applications to noise attenuation
for both conventional and simultaneous-source seismic data.

INTRODUCTION

Most random noise attenuation techniques necessitate a control of the trade-off be-
tween preservation of useful signal and removal of random noise. F -x deconvolution
and projection (Canales, 1984; Soubaras, 1995), also known as f -x predictive filtering
(Bekara and van der Baan, 2009; Chen and Ma, 2014), is a common technique for ran-
dom noise attenuation thanks to its convenient implementation and high efficiency.
Commonly a prediction filter length is modified in order to increase or decrease the
ability of f -x deconvolution to remove random noise, at the expense of decreasing or
increasing the preservation of useful signal. When the data character is complex, the
filter length should be long enough to capture certain amounts of useful signal, but at
the same time to attenuate a limited amount of noise. Otherwise, a portion of useful
signal can be lost because of a large number of dip components in the data (Chen
and Ma, 2014). For certain specific types of random noise, such as blending noise in
simultaneous-source seismic data (Beasley et al., 1998; Berkhout, 2008; Abma et al.,
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2010; Chen et al., 2014a), median filtering (MF) can be particularly effective (Huo
et al., 2012; Chen, 2014; Chen et al., 2014b). However, the ability of MF to remove
spike-like blending noise strongly depends on the length of the filtering window. A
longer filter leads to a more powerful attenuation for blending noise, but at the same
time causes a possible loss of useful energy. In contrast, when the length of the filter-
ing window is small, MF may eliminate less useful energy but also will be less able
to remove spiky noise. Removing spiky noise without losing too much useful signal
becomes a difficult trade-off.

Suppose that the seismic data d is composed of signal strue and noise ntrue, a
successful random noise attenuation will give accurate signal and noise estimation:
s0 ≈ strue and n0 ≈ ntrue, where s0 and n0 are the estimated signal and noise.
However, the ideal situation may not occur in practice for two main possible reasons:
incorrect parameter selection or inadequacy of denoising assumptions. When those
assumptions are not met, the conventional denoising approaches may not achieve the
optimal performance. For most noise attenuation approaches, the noise section will
contain a certain amount of useful signal, which can be called signal-leakage energy.
Sometimes, the leakage energy is negligible, whereas in other cases, this loss of energy
may result in a decrease in resolution.

Local seismic attributes measure seismic signal characteristics neither instanta-
neously, at each signal point, nor globally, across a data window, but locally in the
neighborhood of each point (Fomel, 2007a). One of the most useful local attributes is
local similarity, which has found numerous successful applications in different areas
of seismic data processing: multicomponent image registration (Fomel et al., 2005;
Fomel, 2007a), time-lapse registration (Fomel and Jin, 2009; Zhang et al., 2013), time-
frequency analysis (Liu et al., 2011b), structure-enhancing filtering (Liu et al., 2010),
phase estimation (Fomel and van der Baan, 2014), etc. By using a weighted stacking
of seismic data according to local similarity to the reference trace, a seismic image
with an increased signal-to-noise ratio can be obtained (Liu et al., 2009, 2011a). In
this paper, we introduce a new local seismic attribute: local orthogonalization weight
(LOW) in order to perform local orthogonalization. LOW appeared previously in the
definition of local similarity and can be obtained by solving a minimization problem
using shaping regularization with a smoothness constraint.

In order to compensate for the loss of useful signal in traditional noise attenua-
tion approaches, because of incorrect parameter selection or inadequacy of denoising
assumptions, we employ a weighting operator on the initially denoised section for the
retrieval of useful signal from the initial noise section. The new denoising process
corresponds to local orthogonalization of signal and noise based on the assumption
that final estimated signal and noise should be orthogonal to each other in the time-
space domain. The orthogonality assumption is similar as assuming that the signal
and noise do not correlate with each other. Thus, the orthogonality assumption is
assumed to be valid for all kinds of noise that do not correlate with the useful signal,
e.g., random noise. The proposed local-orthogonalization approach can be considered
as a specific case of previously proposed nonstationary matching filtering (Fomel,
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2009) for one-point filter length. The proposed approach is not very sensitive to the
parameter selection, and thus is robust in practice. We use two synthetic examples
and three field data examples to demonstrate successful performance of the proposed
approach in applications to both conventional and simultaneous-source seismic data.

METHOD

Compensating for the signal-leakage energy by weighting

For many random noise attenuation approaches, the leakage energy is not negligible.
We can attempt to retrieve the leaking signal from the noise section by applying a
simple nonstationary weighting operator to the initially denoised signal assuming that
the leakage energy can be predicted by weighting the useful signal:

s1 = w ◦ s0. (1)

Here s1 is the retrieved signal, w ◦ s0 = diag(w)s0 = diag(s0)w, which denotes
Hadamard (or Schur) product, and diag(·) denotes the diagonal matrix composed of
an input vector. The weighting vector w can be estimated by solving the following
minimzation problem:

min
w
‖

n0︷ ︸︸ ︷
d−P[d]−w ◦

s0︷︸︸︷
P[d] ‖22, (2)

where d denotes the observed noisy data, and P denotes the initial random noise
attenuation operator. Equation 2 uses a weighted (scaled) signal s0 to match the
leakage energy in the initial noise section (n0) in a least-squares sense. In the next
section, we will introduce an approach to calculate the weighting vector w using local
orthogonalization.

Local orthogonalization

Based on the assumption that final estimated signal s and noise n should be orthog-
onal to each other, we can orthogonalize the estimated signal and estimated noise
by

n̂ = n0 − ws0, (3)

ŝ = s0 + ws0, (4)

where w is the global orthogonalization weight (GOW) defined by

w =
nT

0 s0

sT
0 s0

. (5)

Here [·]T denotes transpose. Appendix A provides a demonstration and proof for the
global orthogonalization process as denoted by equations 3, 4 and 5. The orthogo-
nality assumption is similar as assuming that the signal and noise do not correlate
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with each other, which implies the kinds of noise that do not correlate with the useful
signal, e.g., random noise. The orthogonality assumption is assumed to be valid in
the original time-space domain, but also has the possibility of being applied in other
transformed domains. Instead of using GOW, we propose to use nonstationary local
orthogonalization weight (LOW). One possible definition of LOW is:

wm(t) =

t+m/2∑
i=t−m/2

s0(i)n0(i)

t+m/2∑
i=t−m/2

s2
0(i)

, (6)

where wm(t) denotes the LOW for each temporal point t with a local window length
m. s0(t) and n0(t) here denotes the initially estimated signal and noise for each point
t.

Solving LOW by shaping regularization

In order to better control the locality and smoothness of LOW, we follow the local-
attribute scheme introduced by Fomel (2007a). Simplifing equation 2, and adding a
local-smooth constraint to the optimization problem, we obtain:

w = arg min
w
‖ n0 − S0w ‖22 +R(w). (7)

Here, w is the LOW, S0 is a diagonal matrix composed of the initial estimated signal
s0: S0 = diag(s0). R denotes a smoothing regularization operator. Then we solve
the least-squares problem 7 with the help of shaping regularization (Fomel, 2007b)
using a local-smoothness constraint:

w = [λ2I + T (ST
0 S0 − λ2I)]−1T ST

0 n0, (8)

where T is a triangle smoothing operator and λ is a scaling parameter set as λ =
‖ST

0 S0‖2. Inserting w into equation 1, we can obtain a new denoising approach:

s = s0 + s1 = P[d] + w ◦P[d] = (I + diag(w))P[d], (9)

n = n0 − s1 = d−P[d]−w ◦P[d] = d− (I + diag(w))P[d]. (10)

Here, s and n are the final estimated signal and noise.

The controlling parameter for calculating LOW is the width of the triangle smoother,
or the smoothing radius (SR). Figure 1 shows the calculated LOWs that correspond
to the second synthetic example (Figure 3) with different smoothing radii. The LOW
are calculated by solving the equation 7 with the initial denoised signal and initial
removed noise set as Figures 3d and 3e, respectively, using the approach shown in
equation 8. As we can see from the comparison, LOW is robust with respect to
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a b

c d

Figure 1: LOWs using different smoothing radii for the example as shown in Figure
3. (a) Vertical and lateral smoothing radii are 25 samples. (b) Vertical and lat-
eral smoothing radii are 20 samples. (c) Vertical and lateral smoothing radii are 10
samples. (d) Vertical and lateral smoothing radii are 5 samples.
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the choice of the smoothing radius (e.g., from 25 samples to 20 samples, or from 10
samples to 5 samples), but may differ a lot for significantly different smoothing radii
(e.g., from 25 samples to 5 samples). We can also conclude from the comparison that
as the smoothing radius increases, the temporal and spatial resolutions decrease, but
the anti-noise ability increases. Note that the orthogonalization equations 2 and 7
can also be understood as one-point nonstationary matching filtering (Fomel, 2009).

SYNTHETIC EXAMPLES

We use two synthetic examples to test the performance of the proposed denoising
algorithm. For consistency, we use denoising to denote random noise attenuation
for regular seismic data, and deblending to denote blending noise attenuation for
simultaneous-source seismic data. The first example is a deblending test, similar to
the one used by Huo et al. (2012). The second example is a denoising test that contains
four crossing linear events. In order to test the improvement in the signal-to-noise
ratio of these two synthetic examples, we utilize the following measurement:

SNR = 10 log10

‖strue‖22
‖strue − s‖22

. (11)

In addition to SNR, we also propose to use local similarity (Fomel, 2007a) as
a convenient measure to evaluate denoising performance. Appendix B gives a brief
review of local similarity. After the local similarity map between the denoised data
and removed noise is calculated, we can judge from the local similarity if there is
leakage energy in the noise. When the clean data is unknown for field data denoising
tests, the SNR based evaluation becomes unavailable. Besides, the SNR is not always
the best measurement for denoising performance because it does not measure the
signal leakage. However, the local similarity map can always be used to evaluate the
denoising performance.

Figure 2 shows the deblending performance using a conventional MF and the pro-
posed denoising approach. The original clean, unblended data are shown in Figure
2a. After blending using a simple random-dithering method (Chen et al., 2014a), we
obtained the noisy data containing spike-like blending noise (2c). Figure 2d demon-
strates a denoised section after using MF. The noise section corresponding to MF is
shown in Figure 2e and contains a certain amount of signal leakage in the form of
linear events. Using the proposed denoising approach, we obtained a denoised section
with stronger-amplitude linear events. In the corresponding noise section, any coher-
ent linear events are barely noticeable, suggesting a nearly perfect deblending. In this
example, because the noise are spike-like blending noise, we did smooth too much dur-
ing shaping regularization. In this example, the vertical and lateral smoothing radii
are both 2 samples. Figures 2f and 2i show local similarity of the noise section to the
denoised section before and after using the proposed approach. After applying the
proposed method, the noise section exhibits low similarity with the denoised section.
Although structure-oriented median filtering can handle the dipping reflector, they
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a b c

d e f

g h i

Figure 2: Comparison of using the local-orthogonalization-based random noise at-
tenuation approach for deblending test before and after. (a) Unblended section. (b)
Blending noise section. (c) Blended section. (d) Deblended result using MF. (e) Noise
section using MF. (f) Local similarity map between (d) and (e). (g) Deblended result
using the proposed method. (h) Noise section using the proposed method. (i) Local
similarity map between (g) and (h).
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can only work well for relative simpler structures where the dip estimation can be
precisely obtained, in which case there will be no need to use the proposed approach.
However, when the dip estimation is not accurate, or there are conflicting dips in
a processing window, the structure-oriented median filtering may not work well, in
which case we can use the proposed approach for retrieving the leaked useful energy.

Figure 3 shows the denoising performance based on the conventional f -x decon-
volution (Canales, 1984). The clean data is shown in Figure 3a and the noise section,
corresponding to f -x deconvolution, is shown in Figure 3f; it contains some horizon-
tal and low-dip-angle signals. The coherent leakage energy is also visible in the local
similarity map (Figure 3f). Applying the proposed denoising approach, we obtained a
denoised section with stronger-amplitude horizontal events. The corresponding noise
section does not contain any coherent signal. In this example, the vertical and lateral
smoothing radii are both 25 samples. Figures 3f and 3i denote local similarity of the
noise section to the denoised section before and after using the proposed approach.
The similarity decreases significantly after applying local orthogonalization.

The SNR comparison before and after using local-orthogonalization approach is
summarized in Table 1.

Test Deblending denoising
Original (dB) 1.173 -1.72

Initially denoised (dB) 17.65 21.21
Orthogonalized (dB) 20.95 25.30

Table 1: Comparison of SNR before and after using the proposed approach.

FIELD EXAMPLES

In this section, we use three field data sets to evaluate the proposed method. The
first example is a simulated deblending test and the latter two examples are common
denoising tests.

Figure 4a shows the unblended data for the first test, which is a deep-water com-
mon receiver section containing events that are nearly flat. After numerical blending
using the same blending approach as in the first synthetic example, the blended data
(shown in Figure 4c) demonstrate strong interference. Figure 4d shows the deblended
data after the use of f -x deconvolution. When checking the noise section in Figure
4e, we found many coherent signals, suggesting a significant leakage of useful signal
energy. The denoised section after using the proposed approach is shown in Figure
4g. The noise section no longer contains coherent useful signals while the removed
blending noise appears nearly unchanged. In this example, we set the vertical and lat-
eral smoothing radii to 25 samples. The similarity maps before and after application
of the proposed method are shown in Figure 4f and 4h. The SNR using the previous
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a b c

d e f

g h i

Figure 3: Comparison of using the local-orthogonalization-based random noise atten-
uation approach for denoising test before and after. (a) Clean section. (b) Random
noise section. (c) Noisy section. (d) Denoised result using f -x deconvolution. (e)
Noise section using f -x deconvolution. (f) Local similarity map between (d) and (e).
(g) Denoised result using the proposed method. (h) Noise section using the proposed
method. (i) Local similarity map between (g) and (h).
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criteria of the blended data is 0.04. After the initial deblending using f -x deconvo-
lution, SNR improves to 7.44. Further, after the proposed retrieving-signal process,
SNR improves to 10.08. It is worth to be mentioned that the preservation of useful
signal is of significant importance in deblending, and thus the proposed approach is
particularly attractive in its application to deblending.

The second field data test is for a land seismic section, which was used previously
by Fomel (2007a) and Liu and Fomel (2012). The input image is shown in Figure
5. The shallow part of the section is noisy, which may make interpretation difficult.
After a conventional f -x deconvolution, a much cleaner section is obtained (Figure
6a). Some coherent signal is left in the noise section shown in Figure 6d, especially
around 0.75s and the 350th trace. After local signal-and-noise orthogonalization,
we obtained a clean denoised section but with strong amplitude in some regions
and almost no loss of useful component in the noise section (Figure 6d). In this
example, the vertical and lateral smoothing radii are both 2 samples. Unlike the
synthetic data test and the previous field data test, for this field data test, the clean
signal is unknown, so the SNR measurement cannot be applied in this case. The
two corresponding similarity maps are shown in Figure 7. The local similarity after
applying the proposed approach is nearly zero along the whole seismic section.

The third field data example is borrowed from Liu et al. (2012). The noisy data is
shown in Figure 8. The initial signal and noise models are prepared using f − x reg-
ularized nonstationary autoregression (RNAR). Following the approach of Liu et al.
(2012), the initially denoised data are shown in Figure 9a. The corresponding noise
section is shown in Figure 9c. The general denoising approach shows good perfor-
mance considering the clean denoised image and random removed noise. However, we
can find small useful signals from the noise section, as indicated by the frame boxes
in Figure 9c. The denosied image using the proposed approach is shown in Figure
9b. After using local orthogonalization to retrieve useful signal, the coherent signal
disappears in the final noise section (Figure 9d), as indicated by the frame boxes.
The zoomed sections corresponding to frame boxes A and B in Figure 9 are shown in
Figure 10. In this example, we chose the vertical and lateral smoothing radius as 5
samples. Before using the proposed approach, the local similarity map between the
denoised data and removed noise (Figure 11a) showed some high-similarity anomalies.
After applying the proposed approach, the similarity map is nearly zero everywhere
across the whole section.

CONCLUSIONS

Conventional methods for noise attenuation may cause some leakage of signal en-
ergy in the noise section as a result of incorrect parameter selection or inadequacy
of denoising assumptions. We have shown that it is possible to retrieve the leakage
energy by applying a weighting operator to the initial signal and adding the retrieved
signal energy to the initially denoised data to obtain the final denoised data. In or-
der to design an optimized weighting operator, we introduce a new local attribute,
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a b c
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Figure 4: Comparison of using the local-orthogonalization-based random noise at-
tenuation approach for deblending test before and after. (a) Unblended section (not
clean, also containing random noise). (b) Blending noise section. (c) Blended sec-
tion. (d) Deblended result using f − x deconvolution. (e) Noise section using f − x
deconvolution. (f) Local similarity map between (d) and (e). (g) Deblended result
using the proposed method. (h) Noise section using the proposed method. (i) Local
similarity map between (g) and (h).
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Figure 5: Noisy post-stack land field data (Fomel, 2013).

a b

c d

Figure 6: (a) Denoised section using f − x deconvolution. (b) Denoised section using
the proposed approach. (c) Noise section using f−x deconvolution. (d) Noise section
using the proposed approach.
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a b

Figure 7: Comparison of similarity between noise section and denoised section with
and without using the proposed random noise attenuation approach. (a) Similarity
map using f − x deconvolution. (b) Similarity map using the proposed method.

Figure 8: Noisy post-stack field data (Liu et al., 2012).
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a b

c d

Figure 9: (a) Denoised section using f − x RNAR. (b) Denoised section using the
proposed approach. (c) Noise section using f − x RNAR. (d) Noise section using the
proposed approach.
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a b

c d

Figure 10: (a) Zoomed section using f -x RNAR (frame box A shown in Figure 9).
(b) Zoomed section using the proposed approach (frame box A shown in Figure 9).
(c) Zoomed section using f -x RNAR (frame box B shown in Figure 9). (d) Zoomed
section using the proposed approach (frame box B shown in Figure 9).

a b

Figure 11: Comparison of similarity between noise section and denoised section with
and without using the proposed random noise attenuation approach. (a) Similarity
map using f − x RNAR. (b) Similarity map using the proposed method.
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called local orthogonalization weight (LOW). LOW can be obtained by solving a
least-square minimization problem using shaping regularization with a smoothness
constraint. The proposed denoising approach corresponds to locally orthogonalizing
signal and noise. Once the initial signal and noise models are given, the proposed
approach can help retrieve the residual signal in the noise section. The local or-
thogonalization approach to random noise attenuation is applicable to processing of
blended simultaneous-source seismic data, in which the preservation of useful signal is
particularly important. Although the examples were 2-D, the method applies equally
well in 3-D and in any other number of dimensions.
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APPENDIX A: SIGNAL-AND-NOISE
ORTHOGONALIZATION

  

s0

n̂

n0

ws0

Figure A-1: Demonstration of signal-and-noise orthogonalization.

As shown schematically in Figure A-1, the initially estimated signal and noise are
denoted by s0 and n0, respectively. By projecting n0 to the direction of s0, we can
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get the projection ws0. The other component of n0 is the final estimated noise, as
shown in equation 3. The final estimated signal is thus the summation of the initially
estimated signal s0 and the projection component ws0.

When w =
nT

0 s0
sT
0 s0

, the following equation holds:

n̂T ŝ = (n0 − ws0)
T (s0 + ws0) = nT

0 s0 − wsT
0 s0 + wnT

0 s0 − w2sT
0 s0

= nT
0 s0 −

nT
0 s0

sT
0 s0

sT
0 s0 +

nT
0 s0

sT
0 s0

nT
0 s0 −

(
nT

0 s0

sT
0 s0

)2

sT
0 s0 = 0

(A-1)

Here, ŝ and n̂ denote the final estimated signal and noise, respectively, and appear
orthogonal to each other. This orthogonalization approach is also known as Gram-
Schmidt orthogonalization (Hazewinkel, 2001). Note that w defined above can be
obtained by solving the least-squares optimization problem:

min
w
‖ws0 − n0‖22, (A-2)

which we extend to equation 7 in the main text.

APPENDIX B: REVIEW OF LOCAL SIMILARITY

Fomel (2007a) defined local similarity between vectors a and b as:

c =
√

cT
1 c2 (B-1)

where c1 and c2 come from two least-squares minimization problems:

c1 = arg min
c1

‖a−Bc1‖22, (B-2)

c2 = arg min
c2

‖b−Ac2‖22, (B-3)

where A is a diagonal operator composed from the elements of a: A = diag(a) and B
is a diagonal operator composed from the elements of b: B = diag(b). Least-squares
problems B-2 and B-3 can be solved with the help of shaping regularization with a
smoothness constraint:

c1 = [λ2
1I + T (BTB− λ2

1I)]
−1T BTa, (B-4)

c2 = [λ2
2I + T (ATA− λ2

2I)]
−1TATb, (B-5)

where T is a smoothing operator, and λ1 and λ2 are two parameters controlling the
physical dimensionality and enabling fast convergence when inversion is implemented
iteratively. These two parameters can be chosen as λ1 = ‖BTB‖2 and λ2 = ‖ATA‖2
(Fomel, 2007a). The definition of c1 and c2 are equivalent to definition of LOW in
this paper.
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