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ABSTRACT

Conventional velocity scan can be computationally expensive for large-size seis-
mic data, particularly when the presence of anisotropy requires multiparameter
estimation. We introduce a fast algorithm for 3D azimuthally anisotropic velocity
scan, which is a generalization of the previously proposed 2D butterfly algorithm
for hyperbolic Radon transform. To compute the semblance in a two-parameter
residual moveout domain, the numerical complexity of our algorithm is roughly
O(N31log N) as opposed to O(N®) of the straightforward velocity scan, with N
being representative of the number of points in either dimension of data space or
parameter space. We provide both synthetic and field-data examples to illustrate
the efficiency and accuracy of the algorithm.

INTRODUCTION

Multiazimuth seismic data reveal the Earth’s seismic response along different az-
imuthal directions. Detecting and measuring the anisotropy in such data can be
useful for characterizing fractures or stress in the subsurface (Tsvankin and Grechka,
2011). When apparent azimuthal anisotropy is present, conventional single-parameter
isotropic velocity scan and normal moveout are usually inadequate. To further flatten
the events, a residual anisotropic moveout is necessary. This, however, brings several
difficulties in the implementation. First, the computational cost increases dramati-
cally compared with the single-parameter case. If we assume for simplicity that there
are N sample points in every dimension of data and model (parameter) domains, then
the numerical complexity of a two-parameter velocity scan will be at least O(N®); i.e.,
summing over O(N?) data points for each of O(N?) values (time + two parameters).
Second, the simultaneous automatic picking from a high-dimensional semblance vol-
ume also poses a challenge (Adler and Brandwood, 1999; Siligi et al., 2003; Arnaud
et al., 2004; Tao et al., 2012).

In this work, we attempt to solve a fundamental problem related to the first
difficulty. Specifically, we introduce a fast algorithm to speed up the velocity-scan
process. The stacking procedure involved in computing the semblance can be regarded
as a generalized Radon transform (Beylkin, 1984). Following our previous work on the

TCCS-8



Hu et al. 2 Fast 3D anisotropic velocity scan

hyperbolic Radon transform (Hu et al., 2012, 2013), we formulate the time-domain
summation as a discrete oscillatory integral in the frequency domain, and apply the
3D version of the FIO (Fourier integral operator) butterfly algorithm (Candes et al.,
2009). As a result, complexity of the velocity scan reduces to roughly O(N?3log N),
where N is representative of the number of points in either dimension of data space or
model space. An alternative approach was developed by Burnett and Fomel (2009),
but may not be applicable for noisy data.

THEORY

As explained by Grechka and Tsvankin (1998), a pure-mode (P or S) reflection event
in an effectively azimuthally anisotropic medium can be described by

t= /72 + W22 + Wagy? + 2Wisay, (1)

where ¢ is two-way CMP traveltime, 7 is two-way zero-offset traveltime, (x,y) is the
full source-receiver offset in surface survey coordinates, and

Wit Wi
W = 2
< Wis W ) 2)

is the slowness matrix. Equation 1 follows from a truncated 2D Taylor expansion.
Geometrically, it represents a curved surface that is hyperbolic in cross section and
elliptic in map view.

Ideally, one can perform a semblance scan (Taner and Koehler, 1969) over the
three parameters Wi, Wy, and Wi, simultaneously to estimate the velocity and
perform NMO correction. However, this approach, if not impossible, is extremely
expensive for large-size seismic data. Furthermore, since these parameters are not
orthogonal, the semblance plots might appear to be extended and ambiguous, hence
presenting difficulties for picking (Fowler et al., 2006).

Davidson et al. (2011) proposed a stable way of detecting azimuthal anisotropy
using an orthogonal parametrization of the moveout function, which is based on an
equivalent reformulation of equation 1,

E= /72 W22 4 32) + Wean(@? = 42) + 2Winay. )

The cosine and sine dependent slownesses W..s and Wy, are usually much smaller than
the averaged slowness W,y,. Therefore, a possible workflow for anisotropic velocity
analysis and NMO correction can proceed in three steps:

1. Perform an isotropic velocity scan to estimate W,y, and flatten seismic events.

2. Perform a residual anisotropic moveout to account for W, and W, dependent
terms simultaneously.
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3. Convert orthogonal parameters to more intuitive anisot-ropy parameters. For
instance, the normal moveout velocity at azimuth « can be recovered by

V2 (@) = Wavg + Weos €08 200 + Wiy, sin 20v. (4)
In this procedure, the first two steps require a velocity-scan process. In fact, because
x and y are symmetric in Wye(22 4 3?), the single-parameter isotropic scan involved
in the first step can be handled efficiently by a 2D butterfly algorithm, as discussed
in our previous work (Hu et al., 2012, 2013). Our goal in this paper is to speed up
the more expensive, two-parameter velocity scan in the second step.

To be specific, what we need for residual moveout is to compute a semblance as
follows (assuming that the Wy, part has been moved out from the previous step):

2
(Z d(t(l‘, Y, T, Wcosa Wsin)a xz, y))

x,y
: (5)
NoNy >~ d(H(z, y; 7, Weos, Wain), 7, 9)

x7y

S(Ta Wcos: WSin) =

where d(t,z,y) is a 3D CMP dataset after isotropic moveout and

t(l’, YT, Wcos: Wsin) - \/7'2 + Wcos(x2 - y2) + QWSmI'y. (6)

Basic formulation

The right-hand side of equation 5 is a quotient of two (discrete) generalized Radon
transforms (Beylkin, 1984). They can be expressed in a unified way as (to simplify
the notation, we write p = Wes, ¢ = Wy, in this and next subsections)

(Rg)(T,p.q Zg (V72 +p(a? — y?) + 2qay, 7, ), (7)

where ¢ is d or some composite function of d.

To construct the fast algorithm, we first rewrite equation 7 in the frequency domain

(Rg)(1.p.q) = Y *TIN T 200g (£ g yy). (8)

frzy

as

where f is frequency and g(f,z,y) is the Fourier transform of ¢(¢t,z,y) in time.
We next perform a linear transformation to map all discrete points in (f,z,y) and
(7,p,q) domains to points in the unit cube [0, 1]3; i.e., a point (f,z,y) € [fumins fmax] X
[Zmins Tmax] X [Ymin, Ymax) 18 mapped to k = (ky, ko, k3) € [0,1] x [0,1] x [0,1] = K via

f = (fmax - fmin)kl + frniny
xr = (‘Tmax - xmin)kZ + Tmin,

Yy = (ymax - ymin>k3 + Ymin;
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a pOiIlt (7—7 D, Q) S [Tmim Tmax] X [pmina pmax] X [Qminy Qmax] iS mapped tox = (xlu X2, .%'3) S
[0,1] x [0,1] x [0,1] = X via

T = (Tmax - 7—min)xl + Tmin,
b= (prnax - pmin)x2 +pmin7
q= (qmax - Qmin)gji’) + Qmin -

If we define a phase function ®(x,k) as

= /T2 + p(2? — y2) + 2qay, (9)

then equation 8 can be recast as

(Rg)(x) = ) m*09g(k), xe X (10)

keK

(throughout the paper, K and X are used to denote either sets of discrete points or
the cubic domains containing them).

Fast 3D butterfly algorithm

Equation 10 is the discretized form of a 3D oscillatory integral of the type
u(x) = / TPy (k) dk, x € X, (11)
K

whose fast evaluation can be realized by a butterfly algorithm (Candes et al., 2009).

The overall structure of the 3D butterfly algorithm basically follows its 2D ana-
logue. The idea is to partition the computational domains X and K recursively into a
pair of octrees, Tx and Tk, ending at level [ = log N (see Figure 1 for an illustration).
Here N is chosen as an integer power of two, which is on the order of the maximum
of |®(x,k)| for all possible x and k (so it is mainly determined by the range of vari-
ables (f,z,y) and (7,p,q)). A crucial property of this structure is that at arbitrary
level [, the side lengths w(A) of a box A in Tx and w(B) of a box B in Tk always
satisfy w(A)w(B) = 1/N. Then when x, k restricted in A and B respectively, one

can construct a low-rank, separated expansion for the kernel function e?7®*K) (via
a Chebyshev interpolation):
2m<1> (x,k) Z aAB ﬁAB ) ‘ (12>

By embedding this approximation in the above tree structure and traversing Tx from
top to bottom, Tk from bottom to top, we arrive at a fast algorithm running in
complexity O(N3log N) (there are N* pairs of boxes (A, B) on every level, and there
are log NV levels in total). Detailed description of the algorithm can be found in Hu
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x1(7) ki(t)

Figure 1: Butterfly tree structure for the special case of N = 4.
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event 7 Wayg Wes  Wan
1 0.7 0.3 0 0
2 1.8 0.29 0.021 0.021
3 26 0.25 -0.01 -0.017
4 3.4 0.15 0 0.02

Table 1: Parameters used to generate the seismic events in Figure 2.

et al. (2013), where the difference between 2D and 3D formulations should be clear
from the context.

Considering the initial Fourier transform for preparing data in ( f, x, y) domain, the
overall complexity of our algorithm is roughly O(N, N, N; log N;)+O(Ci(re) (NN, N,+
N.N,N,)) + O(Cs(r.)N*log N) (r. terms are due to low-rank approximations, and
Cy(re) is bigger than C(r.)).

By comparison, the conventional straightforward velocity scan requires at least
O(N,;N,N,N,N,) computations, which may quickly become a bottleneck as the prob-
lem size increases. Yet the efficiency of our algorithm is controlled mainly by O(N?log N)
with an e-dependent constant, where N is determined by the degree of oscillations in
the kernel e?7®k)  Generally speaking, N depends on the maximum frequency and
offset in the dataset, and the range of parameters in the model space. In practice, N
can often be chosen smaller than the grid size.

The significance of above analysis for the fast algorithm lies in the fact that the
input and output data sizes N;N,N, and N,;N,N, have little impact on the final
computational cost; a dense sampling therefore becomes affordable.

NUMERICAL EXAMPLES
Example 1

We first consider a simple 3D synthetic CMP gather consisting of four isolated events,
each with a different degree of azimuthal anisotropy (Figure 2a). The moveout pa-
rameters 7, Waye, Weos, and Wy, used to generate the events are specified in Table
1. Figure 2b shows the data after isotropic NMO using the exact W,y Except
for the first flattened isotropic event, the other three events clearly require an addi-
tional moveout. The computed semblance by the fast algorithm is shown in Figure 3,
where manually picked parameters coincide well with exact values. Besides accuracy,
what is remarkable is that, even for this moderate-sized problem (N, = N, = 1000,
N, = Ny, = Ny, = Nw,, = 100), CPU time of the butterfly algorithm (for a single

sin

Radon transform) is about 139 s, whereas the direct velocity scan takes 4681 s.
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Figure 2: 3D synthetic CMP gather (a) before and (b) after isotropic NMO. N; =
1000, N, = N, = 100. At =0.004 s, Az = Ay = 80 m.

-0.0102

—0.02 0 0.02 —0.02 Q 0.02
Weos (s?/kmR) Wsin (s?/km?)

Figure 3: Semblance plot (event 3) computed by the fast algorithm. N, = 1000,
Nw... = Ny, = 100.

sin
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Direct Fast butterfly Speedup

Nw,., X Ny, velocity scan  algorithm factor
10 x 10 1847 s 145 s 12.7
20 x 20 7394 s 146 s 50.6
100 x 100 ~ 184700 s 159 s ~ 1162
200 x 200 ~ 738800 s 196 s ~ 3769

Table 2: CPU time of direct velocity scan and fast butterfly algorithm for different
Nw... and Ny applied to the synthetic data in Figure 4.

sin

Example 2

We now further investigate the properties of the fast algorithm using a more realistic
3D synthetic CMP gather (Figure 4). The semblance plot computed by the fast
algorithm is shown in Figure 5. Figure 6a is the isotropically NMO corrected data.
After residual moveout using picked velocities from the semblance, curved events are
flattened to the right position (Figure 6b).

We next fix N, = N, = 1000, N, = N, = 400 and compare CPU time of the fast
algorithm and the direct velocity scan for different Ny, and Ny, (Table 2). When
Nw.,. and Ny, increase by a factor of 2, computation time of the direct velocity
scan increases nearly by a factor of 4, which is consistent with our previous discussion
on numerical complexity. On the other hand, CPU time of the fast algorithm is not
affected much by the size of output sampling, again confirming our expectations.
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Figure 4: 3D synthetic CMP gather. N, = 1000, N, = N, = 400. At = 0.004 s,
Az = Ay =25 m.
Example 3

Finally we consider a field-data example. A subset of the McElroy dataset from West
Texas was formed in a supergather (Figure 7). This dataset was studied by Burnett
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Figure 5: Semblance plot computed by the fast algorithm. N, = 1000, Ny._.
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Figure 6: Synthetic gather (a) before and (b) after residual moveout using picked
velocities from the semblance scan.
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and Fomel (2009), in which they proposed a velocity-independent moveout correction
to avoid costly velocity scan. With the fast algorithm, we are now able to compute the
semblance efficiently: only 45 s for a single Radon transform when N; = N, = 400,
N, = N, =297, and Ny, = Nw,,, = 200; direct computation at this sampling would
take approximately 30 hours.

Although the original data have been isotropically NMO corrected, the time slice
still shows a subtle directional trend to flatness (Figure 7). From the semblance plot
(Figure 8), we observe some nonzero values of anisotropic parameters.

Inline Offset (km)

Figure 7: An isotropically NMO-corrected supergather from the McElroy dataset,
West Texas. N, =400, N, = N, =297. At =0.002 s, Az = Ay = 25 m.

Wsin (s®/km?)

Time (s)

—0.005 0 0.005 —0.005 Q 0.005
Wecos (s®/km?®) Wsin (s?/km®)

Figure 8 Semblance plot computed by the fast algorithm. N, = 400, Ny, . =
Nw... = 200.

sin

CONCLUSIONS

We have introduced a fast algorithm for 3D, azimuthally aniso-tropic velocity scan.
Our synthetic and field-data experiments show that the method can be orders of
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magnitude faster than the conventional velocity scan, especially for large-size data
and dense parameter sampling.

To illustrate the idea, equation 3 was used throughout the paper. Applicability
of the butterfly algorithm is not limited to this form of the moveout function, as long
as the transform can be written in the form of equation 10.
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