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ABSTRACT

Unequal illumination of the subsurface highly impacts the quality of seismic imag-
ing. Different image points of the media have different folds of reflection-angle
illumination, which can be caused by irregular acquisition or by wave propaga-
tion in complex media. To address this problem, we present a method of stacking
angle-domain common-image gathers (ADCIGs), in which we use local similarity
with soft thresholding to decide the folds of local illumination. Normalization by
local similarity regularizes local illumination of reflection angles for each image
point of the subsurface model. This approach can restore good fidelity of ampli-
tude by selective stacking in the image space, whatever the cause of acquisition
or propagation irregularities. We use two synthetic examples to demonstrate
that our method can normalize migration amplitudes and effectively suppress
migration artifacts.

INTRODUCTION

The image of geology produced by Kirchhoff migration or wave-equation migration
often suffers from artifacts, especially in the case of irregular acquisition or complex
wave propagation (Qin et al., 2005, Tang), 2007)). Artifacts sometimes bury seismic
reflectors, especially in subsalt areas, and make interpretation and model building
difficult. Developments in acquisition technology (Howard and Moldoveanu, [2006;
Michell et al., 2006) have provided richer coverage and better illumination of the
subsurface; however, areas with poor illumination still exist in complex geological
environments, such as subsalt zones.

Prucha et al.| (2000); [Kuhl and Sacchi (2003) used preconditioned inversion in
the reflection angle domain to improve imaging in complex media. Xu et al. (2001);
Hoop and Ursin| (2003) proposed focusing on dip and AVA compensation in common-
image gathers to suppress artifacts and improve signal-noise ratio in Kirchhoff mi-
gration. To compensate irregular illumination at image points, Kessinger| (2004)
presented illumination-angle compensation in Kirchhoff migration, in which inclu-
sion of an amplitude-weighting term can dramatically improve the migrated image.
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Bloor et al.| (1999); |Audebert et al.| (2005) proposed a method of regularization of
illumination in the multiangle domain for Kirchhoff migration, in which a hit-count
technique is applied to suppress migration artifacts and balance migration ampli-
tudes. |Qin et al. (2005) presented interactive dip-gather stacking for attenuating
artifacts of Kirchhoff migration. |Tangl (2007)) analytically demonstrated artifacts in
angle-domain common-image gathers (ADCIGs) by sparsely-sampled wavefields and
proposed selective stacking on the basis of local smoothing of the envelope function in
shot-profile wave-equation migration. Manning et al.| (2008) proposed the MAZ-stack
method for weighting signal in areas of poor illumination for multiazimuth seismic
data, in which weights of stacking were chosen as binary (zero or one).

Local similarity is a local attribute measured between two signals (Fomel, 2007a))
that has been applied to multicomponent seismic image registration (Fomel et al.,
2005; Fomel, 2007al) and time-lapse image registration (Fomel and Long, 2009)). In an
earlier work (Liu et al., 2009), we also applied local similarity as a weight for stacking
common-midpoint gathers in order to improve signal-noise ratio of seismic data.

In this paper, we present another application of local similarity in stacking AD-
CIGs in order to normalize illumination. Our method applies local similarity be-
tween initial image and ADCIGs using a soft threshold to normalize stacking. It can
attenuate migration artifacts and restore migration amplitudes. This method can
be regarded as true-amplitude illumination compensation arising from the so-called
Beylkin determinant (Beylkin| [1985; |Albertin et al., [1999; |Audebert et al., [2005).

ANGLE-DOMAIN COMMON-IMAGE GATHERS

ADCIGs can be produced both by Kirchhoff methods (Xu et al., 2001; [Hoop and
Ursinl, 2003) and wave-equation methods (Prucha et al., [1999; [Mosher and Foster]
2000; [ Xie and Wul, [2002; Sava and Fomel, |2003; Biondi and Symes, [2004)). In wave-
equation migration methods, angle gathers can be produced either in the data space
during imaging or in the image space after imaging (Fomel, 2004). These methods
can be also applied in source-receiver migration (Sava and Fomel, 2003), shot-profile
migration Rickett and Sava (2002), and reverse-time migration (Biondi and Shan,
2002; [Zhang et al., 2007).

To extract ADCIGs, in wave equation migration we first compute subsurface
offset-domain common-image gathers (ODCIGs) using crosscorrelation imaging con-
dition in space and time, followed by extraction at zero time Sava and Fomel (2006):

I(m,h) =) Usm —h,w)U(m+h,w) . (1)

Here, I(m, h) is the subsurface-offset dependent image, m = [m,, m,, m,| is a vec-
tor of locations of image points, h = [hy, hy, h.] is a vector of local source-receiver
separation in the image space, and * means the conjugate.

In two dimensions, angle-domain common-image gathers I(m, ) can be obtained
by a simple slant-stack operation on ODCIGs I(m,h) after migration (Stolt and
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Weglein| [1985; Weglein and Stolt, [1999; |Sava and Fomel, [2003). For three dimensions,
we can extract ADCIGs after applying imaging condition by transforming local offset
gathers in the depth domain (Fomel, 2004; Sava and Fomel, 2005), in which local
structural dips need to be estimated. In examples herein, we extract ADCIGs in the

image space after applying imaging conditions and test our proposed method on a
2D case.

MEASUREMENT OF LOCAL SIMILARITY

Fomel| (2007a) defined the local similarity attribute using shaping regularization
(Fomel, 2007b). The global correlation coefficient between two discrete signals a;
and b, is defined as

N = Eij\i;l a;by
VEN a2y b2
To locally measure correlation between two signals according to the definition of local

similarity (Fomel, |2007a} [Fomel and Long}, 2009), local similarity 7; can be represented
as the product of two least-squares inverses:

(2)

’Yt2 = Ptq: (3)
Py = arg H}gn (; (ar —pibe)” + R []%]) ; (4)
qr = arg H}gn (2; (ar — tht)2 + R [%]) ) (5)

where R is a regularization operator designed to constrain the solution in a desired be-
havior, such as smoothness. Shaping regularization (Fomel, 2007b) can conveniently
be applied in solving inverse problems and iteratively. The local similarity
can smoothly measure the correlation between two signals locally. It is an estimate
of waveform similarity of two seismic signals.

STACKING USING LOCAL SIMILARITY FOR
NORMALIZATION OF ILLUMINATION

Once we obtain ADCIGs by migration, the final image of subsurface can be obtained
by stacking over the angle axis in ADCIGs. Assuming reflectivity is angle indepen-
dent, we can write equal-weight stacking as

T(m) = ;f > Tm.6) (6)

where NN is the number of samples in the reflection angle. To get rid of the artifacts
caused by poor sampling of the sources or receiver wavefield or complex structure,
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Tang| (2007) suggested stacking only angles with good illumination and dense sam-
pling and applied selective stacking using envelopes as weights of stacking.

In this paper, we use local similarity with soft thresholding as weights to normalize
the stacking:
1 N
Tm) = gy S wlm, 0)1(m. ) (7)
) y(m,0) —a if s(m,0) >«
w(m, §) = { 0 if s(m,0) <a - (8)

Here, ~(m,d) is local similarity between initial imagecomputed I by equa-
tion refeq:e6 and ADCIGs I(m,#). Local similarity can be computed by equations
through refeq:e5. Equation [§] is soft thresholding (Donohol [1995), which can define
the fold of local illumination for each image point, m. Normalizationis K the sum of
weights. Normalization N in equation [7 the number of samples with w(m,§) # 0,
can restore migration amplitude by discarding some samples of angle, which are likely
artifacts or noise. We assume that the discarded samples in ADCIGs are entirely ar-
tifacts or noise, probably caused by irregular acquisition or complex propagation in
the complex subsurface model.

In the following, we use a simple example to illustrate our method. Figure (1} is
a simple synthetic ADCIG with 30 samples of reflection angle, and we add Gaussian
random noise to the ADCIG. Assume that the reflection coefficients are equal and
angle independent. Note that the third and fourth reflectors are not entirely illumi-
nated. The image created by directly stacking this ADCIG is shown in Figure [I{d.
Third and fourth reflectors are not restored in equal-weight stacking because of poor
illumination. The local similarity between the direct equal-weight stacking image
(Figure [Ik) and ADCIG (Figure [lh) computed by equations [3| through [| is shown
in Figure [Ipb. Note that the local similarity can approximate local illumination of
the reflection angle. Xie et al.| (2006) presented a method of computing illumination
distribution as a function of reflection angle on the basis of one-way wave equation.
We apply soft thresholding in local similarity to select angles with good illumination
to contribute to the stacking. And then we use the number of samples of reflection
angles with good illumination to normalize the image. In comparing our method with
the equal-weight stacking method, note that the third and the fourth reflection coef-
ficients are balanced well and the signal-noise ratio is also improved by our method
(Figure [le). Amplitudes in Figure |l are almost the same as those of the ideal image

(Figure [1k).

In Kirchhoff integral migration, Beylkin’s theory (Beylkin, |1985) shows how to
take into account irregularities of illumination caused by acquisition irregularities or
wave propagation in complex media (Audebert et al, 2005)). The Beylkin determinant
estimates the local smooth illumination density function by computation of traveltime
between surface locations and subsurface image point. In this paper, the local fold of
illumination in the denominator of equation [7|is estimated by local similarity with soft
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Figure 1: A simple example. (a) Synthetic ADCIGs with different folds; (b) local
similarity; (c) ideal reflectivity; (d) initial equal-weight stacking; (e) stacking with
normalization using local similarity.

thresholding. Because this estimation of the fold of local illumination is computed
after imaging, the method can be thought of as postprocessing after migration.

When reflection coefficients are angle dependent (known as amplitude versus an-
gle [AVA]), the proposed method can be regarded as an average effect of all angle-
dependent reflection coefficients. It can enhance the image and restore relative am-
plitudes. When considering the AVA effect in stacking processing, one should use the
accurate AVA inversion to obtain the reflection coefficient of the same reflection angle
for all image points (Kuhl and Sacchi, 2003)), such as zero-reflection-angle reflectivity,

or retrieve the map of relative slowness perturbations from multishot seismic data
(Kiyashchenko et al., [2007).

EXAMPLES

Two synthetic examples illustrate the method of stacking ADCIGs for illumination
normalization.

The first example involves a simple constant-velocity model with three reflectors.
The reflecting interfaces are caused by density contrasts, which are chosen in such a
way that all reflection coefficients for all reflectors and reflection angles are identical.
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A similar model was applied by Zhang et al|(2003) and |Schleicher et al. (2008)). The
synthetic dataset is generated using Kirchhoff modeling. It includes 25 shots between
3,000 and 5,000 m, and range of offset is -3,000 to 3,000 m. PSPI wave equation
migration is performed for generating ADCIGs (Figure . The three reflectors
can be found to have different folds caused by acquisition geometry. The parts that
are not illuminated in ADCIGs do not all have zero values; some are occupied by
noise or artifacts. Therefore, appropriate normalization when stacking all reflection
coefficients of different reflection angles together must be ensured. The local similarity
cube (Figure can provide normalization for stacking. By comparing equal-weight
stacking and our method (Figure [3|), we find that image amplitudes are improved,
especially on the sides of the model, which are not entirely illuminated because of
acquisition.
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Figure 2: (a) ADCIGs for the simple synthetic example; (b) local similarity cube.

25600 3000 3500 4000 4500 5000 5500 25600 3000 3500 4000 4500 5000 5500

a b

Figure 3: (a) Equal-weight stack; (b) stack normalized by local similarity.

The second example involves the Sigsbee2A model (Paffenholz, 2000). This
dataset is known to have illumination problems below the salt. Figure [4] shows the
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ADCIGs of Sigsbee2A model. Figures[pal and [6a], respectively, show images of 0° and
20 ° reflection angles. Figures [5b] and [6b] respectively, show the local similarity cube
of 0° and 20° reflection angles. Comparing local similarity cubes of different reflec-
tion angles, we can find that folds of local illumination are not equal for all image
points. The folds are closely uniform in areas with simple structures, but differences
can be found in complex media, such as in subsalt areas (Figures and . Fig-
ure [7] shows the result of equal-weight stacking, and Figure [§ shows the result of our
method. With normalization, reflection coefficients are restored, such as below the
salt (Figure[§). Our method’s image beneath the salt is clearer than that of the con-
ventional stacking method, and amplitude of the base line, with strong reflectivity at
the bottom of the Sigsbee2A model, is more balanced. Note that fault and diffraction
points below the salt become clearer after normalization using local similarity.
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Figure 4: ADCIGs of the Sigsbee2A Model.

CONCLUSIONS

We have presented a method for stacking angle-domain common-image gathers for
illumination normalization in which we use a local similarity cube between initial
image and ADCIGs as the approximate fold of local illumination for each image
point of the media. Normalization by local fold can restore migration amplitude
and attenuate artifacts possibly caused by irregular acquisition geometry or by wave
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Figure 5: 0° angle image and (a) its local similarity (b) of the Sigsbee2A model.
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Figure 6: 20° angle image and (a) its local similarity (b) of the Sigsbee2A model.
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Figure 7: The image of Sigsbee2A using initial equal-weight stacking.

propagation in complex media. Our method is easy to implement and can be seen as
a postprocessing step after migration. Two synthetic examples show that this method
can be used to enhance migrated images and to restore migration amplitudes.
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