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ABSTRACT

Attenuation of random noise and enhancement of structural continuity can sig-
nificantly improve the quality of seismic interpretation. We present a new tech-
nique, which aims at reducing random noise while protecting structural infor-
mation. The technique is based on combining structure prediction with either
similarity-mean filtering or lower-upper-middle (LUM) filtering. We use struc-
ture prediction to form a structural prediction of seismic traces from neighboring
traces. We apply a nonlinear similarity-mean filter or an LUM filter to select
best samples from different predictions. In comparison with other common fil-
ters, such as mean or median, the additional parameters of the nonlinear filters
allow us to better control the balance between eliminating random noise and
protecting structural information. Numerical tests using synthetic and field data
show the effectiveness of the proposed structure-enhancing filters.

INTRODUCTION

Extracting structural information is the most important goal of seismic interpreta-
tion. A number of approaches have been proposed to preserve and enhance struc-
tural information. Hoeber et al. (2006) applied nonlinear filters, such as median,
trimmed mean, and adaptive Gaussian, over planar surfaces parallel to the struc-
tural dip. Fehmers and Höcker (2003) and Hale (2009) applied structure-oriented
filtering based on anisotropic diffusion. Fomel and Guitton (2006) suggested the
method of plane-wave construction. AlBinHassan et al. (2006) developed 3-D edge-
preserving smoothing (EPS) operators to reduce noise without blurring sharp dis-
continuities. Traonmilin and Herrmann (2008) used a mix of finite-impulse-response
(FIR) and infinite-impulse-response (IIR) filters, followed by f -x filtering, to per-
form structure-preserving seismic processing. Whitcombe et al. (2008) introduced
a frequency-dependent, structurally conformable filter. Random noise attenuation
and structure protection are always ambivalent problems in seismic data processing.
The main challenge in designing effective structure-enhancing filters is controlling the
balance between noise attenuation and signal preservation.

Mean filter (stacking) plays an important role in improving signal-to-noise ra-
tio in seismic data processing (Yilmaz, 2001). Conventional stacking is a simple
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and effective method of denoising, but it is optimal only when noise has a Gaussian
distribution (Mayne, 1962). Therefore, alternative stacking methods were proposed.
Robinson (1970) proposed a signal-to-noise-ratio-based weighted stack to further min-
imize noise. Tyapkin and Ursin (2005) developed optimum-weighted stacking. To
eliminate artifacts in angle-domain common-image gathers, Tang (2007) presented a
selective-stacking approach, which applied local smoothing of envelope function to
achieve the weighting function. Rashed (2008) proposed “smart stacking,” which is
based on optimizing seismic amplitudes of the stacked signal by excluding harmful
samples from the stack and applying more weight to the center of the samples pop-
ulation. Liu et al. (2009a) introduced time-dependent smooth weights to design a
similarity-mean stack, which is a nonstationary, nonlinear operator.

Lower-upper-middle (LUM) filters (Hardie and Boncelet, 1993) are a class of rank-
order-based filters that generalize the concept of the median filter. They combine the
characteristics of two subclasses, LUM smoothers and LUM sharpeners, and find
a variety of signal and image-processing applications. A special LUM smoother,
probably still the most widely used, is a simple median of the points within a window.
The median filter is a well-known method that can effectively suppress spike-like
noise in nonstationary signal processing. Median filters find important applications
in seismic data analysis. Mi and Margrave (2000) incorporated noise reduction using
median filter into standard Kirchhoff time migration. Zhang and Ulrych (2003) used
a hyperbolic median filter to suppress multiples. Liu et al. (2006, 2009b) implemented
random-noise attenuation using 2-D multistage median filter and nonstationary time-
varying median filter. However, in many cases the median filter introduces too much
smoothing. LUM sharpeners have excellent detail preserving characteristics because
of their ability to pass small details with minimal distortion. For a given window size
and shape, the parameters of LUM filter can be adjusted independently to yield a
wide range of characteristics.

In this paper, we combine structure prediction (Fomel, 2008) with either nonlinear
similarity-mean filtering or lower-upper-middle (LUM) filtering to define a structure-
enhancing filter. Structure prediction generates structure-conforming predictions of
seismic events from neighboring traces, whereas a similarity-mean filtering or an LUM
filtering reduces several predictions to optimal output values. We test the proposed
method on synthetic and field data examples to demonstrate its ability to enhance
structural details of seismic images.

THEORY

Structure prediction

The method of plane-wave destruction (Claerbout, 1992) uses a local plane-wave
model for characterizing the structure of seismic data. It finds numerous applications
in seismic imaging and data processing (Fomel, 2002). Letting a seismic section, s,
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be a collection of traces, s = [s1 s2 . . . sN ]T , the plane-wave destruction operation
can be defined in a linear operator notation as

d = D(σ) s , (1)

where d is the destruction residual and D is the nonstationary plane-wave de-
struction operator defined as follows

d1

d2

d3

· · ·
dN

 =


I 0 0 · · · 0

−P1,2(σ1) I 0 · · · 0
0 −P2,3(σ2) I · · · 0
· · · · · · · · · · · · · · ·
0 0 · · · −PN−1,N(σN−1) I




s1
s2
s3
· · ·
sN

 , (2)

where I stands for the identity operator, σi is local dip pattern, and Pi,j(σi) is an
operator for prediction of trace j from trace i according to the dip pattern σi. A trace
is predicted by shifting it according to the local seismic event slopes. Minimizing the
destruction residual d provides a method of estimating the local slopes σ (Fomel,
2002).

The least-squares minimization of d is achieved by using iterative conjugate-
gradient (CG) method and smooth regularization. Local dip at a fault position
cannot be accurately estimated, its value will depend on the initial slope estimate
and regularization.

Prediction of a trace from a distant neighbor can be accomplished by simple
recursion, i.e., predicting trace k from trace 1 is simply

P1,k = Pk−1,k · · · P2,3 P1,2 . (3)

Fomel (2008) applied plane-wave prediction to predictive painting of seismic im-
ages. In this paper, we use a similar construction to recursively predict a trace from
its neighbors.

An example is shown in Figure 1a. The input data is borrowed from Claerbout
(2008): a synthetic seismic image containing dipping beds, an uncomformity, and a
fault. Figure 1b shows the same image with Gaussian noise added. Figure 1c shows
local slopes measured from the noisy image by plane-wave destruction. The estimated
slope field correctly depicts the constant slope in the top part of the image and the
sinusoidal variation of slopes in the bottom. In the next step, we predict every trace
from its neighbor traces according to the local slope, as described by Fomel (2008).
We chose a total of 14 prediction steps (7 from the left and 7 from the right), which,
with the addition of the original section, generated a data volume (Figure 1d). The
prediction axis corresponds to index k in equation 3. The volume is flat along the
prediction direction, which confirms the ability of plane-wave destruction to follow
the local structure. However, it still contains some discontinuous information because
of the faults. In the next step, we apply nonlinear structure-enhancing filtering to
process the data along the prediction direction.
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a b

c d

Figure 1: Noise-free synthetic image (a), noisy image (b), local slopes estimated from
Figure 1b (c), and predictive data volume, where every trace is supplemented with
predictions from its neighbors (d).
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Choices of nonlinear filters

We have tried two different choices to select best samples from prediction data volume:
Gaussian similarity-mean filter and lower-upper-middle (LUM) filter.

Gaussian similarity-mean filter

The similarity-mean filter is a nonlinear filter that uses local correlation coefficients as
desired weight coefficients (Liu et al., 2009a). It is described in Appendix A. We chose
the shaping operator with smoothing radius of 10 samples in time to calculate local
similarity coefficients between the predicted data at each prediction step and original
data (reference data). Figure 2a displays similarity-weight coefficients from local
correlation. The elements with the shortest prediction distance get largest weights
because they provide the most accurate prediction and therefore are most similar to
the original image. We used zero-value boundary conditions for the prediction, so
the predicted amplitudes from the left most and the right most sides are zero. This
results in the similarity coefficients on the corners of the weight cube to be zero. In the
weighted mean filter, large weight coefficients get selected when the similarity is strong
between processed data and reference data. We introduce additionally Gaussian
weights to localize the smoothing characteristics of the filter

wi = e−h
2
i /h

2
r , (4)

where hi is the distance to trace i and hr is the reference parameter that controls the
shape of the weight function. This construction is analogous to bilateral or non-local
filtering (Tomasi and Manduchi, 1998; Gilboa and Osher, 2008). Figure 2b shows
the product of Gaussian weights and similarity weights. The prediction data volumes
only with similarity weights applied and with Gaussian similarity weights applied
are shown in Figure 2c and 2d respectively. After applying Gaussian and similarity
weights, we stack the data in Figure 2d along the prediction direction. The result is
shown in Figure 3b.

For comparison, we used the standard mean filter to process the prediction data
volume (Figure 1d) along the prediction direction. The result is shown in Figure 3a
and corresponds, in this case, to simple box smoothing along the local image structure.
The standard mean filter simply stacks all information along the prediction direction.
It enhances structural continuity but smears information across the fault.

For further discussion, we show the difference between the noisy image (Figure 1b)
and structure-enhancing results with the standard mean filter and the Gaussian
similarity-mean filter (Figure 3a and 3b). We kept the same scale of magnitude
and plotting clips as that of the input image. From Figure 4a and 4b, the coher-
ent events are well protected by the two methods because structure prediction can
exactly predict coherent information. However fault information is destroyed by the
mean filter (Figure 4a), while the similarity-mean filter provides a result where fault
information is protected well, whereas random noise is attenuated (Figure 4b).
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a b

c d

Figure 2: Similarity weights (a), product of Gaussian weights and similarity weights
(b), the data only with similarity weights applied (c), and the data with Gaussian
similarity weights applied (d).
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a b

c d

Figure 3: Structure-enhancing results using different methods. Standard mean fil-
tering (a), similarity-mean filtering (b), standard median filtering with filter-window
length 15 (c), and lower-upper-middle (LUM) filtering with parameters k = l = 7
(d).
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Lower-upper-middle filter

The lower-upper-middle (LUM) filter is a nonlinear filter that is simple to define and
yet effective for noise attenuation in non-stationary signal processing (Hardie and
Boncelet, 1993). It has two parameters, one for smoothing and the other for sharp-
ening. A general class of LUM filters includes LUM smoothers and LUM sharpeners
as special cases (Appendix B).

By manipulating the parameters k (for smoothing) and l (for sharpening), the
lower-upper-middle (LUM) filter takes on a variety of characteristics. We found that
k = l = (N − 1)/2 works well for our synthetic and field data examples. In the
synthetic example, special smoothing and sharpening parameters, k = l = 7, were
chosen to balance the ability between noise attenuation and fault protection. After
applying the LUM filter on the synthetic noisy image, we obtain the image shown
in Figure 3d. Comparing with Figure 3b, the LUM filter displays the similar-quality
result as Gaussian similarity-mean filter. However, the LUM filter is somewhat easier
to control than the similarity-mean filter.

The standard median filter with filter-window length 15 is compared to the lower-
upper-middle (LUM) filter. After applying the median filter on the prediction direc-
tion of Figure 1d, the result is shown in Figure 3c. When comparing with the mean
filter (Figure 3a), the median filter has a better fault-protection ability but weaker
noise-attenuation result. However, it still makes edges of some faults ambiguous.
The LUM filter uses smoothing and sharpening parameters to limit the smoothing
characteristics of the standard median filter. Therefore, it strikes a reasonable bal-
ance between structure enhancement and fault protection. Figure 4c and 4d show
the difference between the noisy image (Figure 1b) and structure-enhancing results
with the standard median filter (Figure 3c) and the LUM filter (Figure 3d). While
coherent events can be preserved by either of the two filters, the median filter has a
better result of fault protection than the mean filter (Figure 4c) and the LUM filter
can further reduce the fault damage of the standard median filter (Figure 4d).

The key steps of our method are illustrated schematically in Figure 5.

FIELD DATA EXAMPLES

For the first field-data test, we use a time-migrated seismic image from a historic
Gulf of Mexico dataset (Claerbout, 2008). The input is shown in Figure 6a. After
estimating the field of local slopes (Figure 6b), we apply structure prediction to cal-
culate the structural data volume (Figure 7a), which effectively flattens the data. As
in the synthetic example, the length of the prediction axis is 15. Next, we apply two
different filtering approaches. The first choice is the similarity-mean filter. We display
the product of Gaussian weights and similarity weights in Figure 7b. After applying
the similarity-mean filter, we can get a structure-enhanced image (Figure 8a): the
fault structures are protected well while noise is removed. Our second choice is an
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a b

c d

Figure 4: Difference between Figure 1b and structure-enhancing results (Figure 3).
Standard mean filtering (a), similarity-mean filtering (b), standard median filtering
(c), and lower-upper-middle (LUM) filtering (d).
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Figure 5: Schematic illustration of the proposed workflow.
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lower-upper-middle (LUM) filter with parameters k = l = 7. The enhanced result is
shown in Figure 8b. Similarly to the similarity-mean filter, the LUM filter highlights
locally continuous reflectors while preserving the geometry of faults. Figure 9 shows
the difference sections, in which the structure-enhancing results using two filtering
methods (Figure 8) are subtracted from the original data (Figure 6a). After process-
ing, the coherent events are preserved by both methods. The LUM filter also removes
some short events with crossing dips.

An extension of the method to 3-D is straightforward and follows the 3-D pre-
dictive painting construction of Fomel (2008). We use a 3-D field data volume from
the Gulf of Mexico to further test our methods (Figure 10). The dataset includes
faults having an upside-down cone shape and some amount of random noise. Al-
though variations in amplitude along reflectors can be stratigraphically significant,
our goal is to enhance structurally continuous events. We chose a total of 24 predic-
tion traces (2 prediction-step distances around the reference trace), which, with the
addition of the original trace, generated a 4-D data volume. The corresponding inline
and crossline dips were measured automatically from the image using plane-wave de-
struction (Figure 11 and 12). Dip sections display different tendencies in inline and
crossline directions. Figure 13 and 14 show results of nonlinear structure-enhancing
filtering. When processing along the prediction direction, both of our nonlinear fil-
ters work well for noise reduction and fault protection. Figure 15 and 16 show the
difference sections between the original data (Figure 10) and the structure-enhancing
results using two filtering methods (Figure 13 and 14). Similar to the results in the
synthetic and 2-D field examples, both methods can protect useful information well.

CONCLUSION

We have introduced a new technique that combines structure prediction and signal-
enhancing filters: similarity-mean filter and lower-upper-middle (LUM) filter, for
attenuating random noise while enhancing structural information. The technique
is generic. One can replace the proposed filters with other prediction and signal-
enhancing filter methods. Experiments with synthetic and field data show that non-
linear structure-enhancing filters can both eliminate random noise and preserve fault
information in seismic images. Our method makes an implicit assumption that data is
made of long, coherent events and random noise. It may need a further improvement
to deal with areas where either crossing dips or no coherent events are present.
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a

b

Figure 6: 2-D field data (a) and local slopes (b).
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a

b

Figure 7: Predictive data volume (a) and product of Gaussian weights and similarity
weights (b).
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a

b

Figure 8: Structure-enhancing results for image from Figure 6a using similarity-mean
filtering (a) and lower-upper-middle (LUM) filtering (b).
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a

b

Figure 9: Difference between Figure 6a and structure-enhancing results (Figure 8).
Similarity-mean filtering (a) and lower-upper-middle (LUM) filtering (b).
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Figure 10: 3-D image from Gulf of Mexico.
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Figure 11: Local inline dip for the 3-D image from Figure 10.
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Figure 12: Local crossline dip for the 3-D image from Figure 10.
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Figure 13: Structure-enhancing result using similarity-mean filtering. Compare with
Figure 10.
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Figure 14: Structure-enhancing result using lower-upper-middle (LUM) filtering.
Compare with Figure 10.
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Figure 15: Difference between Figure 10 and Figure 13.
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Figure 16: Difference between Figure 10 and Figure 14.
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APPENDIX A: SIMILARITY-MEAN FILTER

Fomel (2007a) defined local similarity as follows. The global correlation coefficient
between two different signals a(t) and b(t) is the functional

γ =
〈a(t), b(t)〉√

〈a(t), a(t)〉〈b(t), b(t)〉
, (A-1)

where 〈x(t), y(t)〉 denotes the dot product between two signals

〈x(t), y(t)〉 =
∫
x(t)y(t)dt . (A-2)

In a linear algebra notation, the squared correlation coefficient γ from equation A-1
can be represented as a product of two least-squares inverses

γ2 = γ1γ2 , (A-3)

γ1 = (aTa)−1(aTb) , (A-4)

γ2 = (bTb)−1(bTa) , (A-5)

where a is a vector notation for a(t), b is a vector notation for b(t), and xTy denotes
the dot product operation defined in equation A-2. Let A be a diagonal operator
composed of the elements of a and B be a diagonal operator composed of the elements
of b. Localizing equations A-4 and A-5 amounts to adding regularization to inversion.
Scalars γ1 and γ2 turn into vectors c1 and c2 defined, using shaping regularization
(Fomel, 2007b)

c1 = [λ2I + S(ATA− λ2I)]−1SATb , (A-6)

c2 = [λ2I + S(BTB− λ2I)]−1SBTa , (A-7)

where λ scaling controls the relative scaling of operators A and B. Finally, the
componentwise product of vectors c1 and c2 defines the local similarity measure.

For using time-dependent smooth weights in the stacking process, the local simi-
larity amplitude can be chosen as a weight for stacking seismic data. We thus stack
only those parts of the predicted data whose similarity to the reference one is com-
paratively large (Liu et al., 2009a).

APPENDEX B: LOWER-UPPER-MIDDLE FILTER

In this appendix, we review lower-upper-middle (LUM) filters introduced by Hardie
and Boncelet (1993). Consider a window function containing a set of N samples

GP-2009-0736



Liu etc. 23 Structurally nonlinear filtering

centered about the sample x?. We assume N to be odd. This set of observations will
be denoted by {x1, x2, · · · , xN}. The rank-ordered set can be written as

x(1) ≤ x(2) ≤ · · · ≤ x(N) . (B-1)

The estimate of the center sample will be denoted y?.

Lower-upper-middle smoother
Lower-upper-middle (LUM) smoother is equivalent to center-weighted medians
(Justusson, 1981). The output of the LUM smoother with parameter k is given
by

y? = med{x(k), x?, x(N−k+1)} , (B-2)

where 1 ≤ k ≤ (N + 1)/2.

Thus, the output of the lower-upper-middle (LUM) smoother is x(k) if x? < x(k).
If x? > x(N−k+1), then the output of the LUM smoother is x(N−k+1). Otherwise
the output of the LUM smoother is simply x?.

Lower-upper-middle sharpener
We can define a value centered between the lower- and upper-order statistics,
x(l) and x(N−l+1). This midpoint or average, denoted tl, is given by

tl = (x(l) + x(N−l+1))/2 . (B-3)

Then, the output of the lower-upper-middle (LUM) sharpener with parameter
l is given by

y? =


x(l), if x(l) < x? ≤ tl
x(N−l+1), if tl < x? < x(N−l+1)

x? otherwise
. (B-4)

Thus, if x(l) < x? < x(N−l+1), then x? is shifted outward to x(l) or x(N−l+1)

according to which is closest to x?. Otherwise the sample x? is unmodified.
By changing the parameter l, various levels of sharpening can be achieved.
In the case where l = (N + 1)/2, no sharpening occurs and the lower-upper-
middle (LUM) sharpener is simply an identity filter. In the case where l = 1, a
maximum amount of sharpening is achieved since x? is being shifted to one of
the extreme-order statistics x(1) or x(N).

Lower-upper-middle filter
To obtain an enhancing filter that is robust and can reject outliers, the philoso-
phies of the lower-upper-middle (LUM) smoother and lower-upper-middle (LUM)
sharpener must be combined. This leads us to the general lower-upper-middle
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(LUM) filter. A direct definition is as follows:

y? =



x(k), if x? < x(k)
x(l), if x(l) < x? < tl
x(N−l+1), if tl < x? < x(N−l+1)

x(N−k+1), if x(N−l+1) < x?

x?, otherwise

. (B-5)

where tl is the midpoint between x(l) and x(N−l+1) defined in equation B-3, and
1 ≤ k ≤ l ≤ (N + 1)/2.

REFERENCES

AlBinHassan, N. M., Y. Luo, and M. N. Al-Faraj, 2006, 3-D edge-preserving smooth-
ing and applications: Geophysics, 71, P5–P11.

Claerbout, J. F., 1992, Earth Soundings Analysis: Processing Versus Inversion: Black-
well Scientific Publications.

——–, 2008, Basic Earth imaging: Stanford Exploration Project,
http://sepwww.stanford.edu/sep/prof/.
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