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ABSTRACT

Time-frequency analysis is an important technology in seismic data processing
and interpretation. To localize frequency content in time, we have developed
a novel method for computing a time-frequency map for nonstationary signals
using an iterative inversion framework. We calculated time-varying Fourier co-
efficients by solving a least-squares problem that uses regularized nonstationary
regression. We defined the time-frequency map as the norm of time-varying coef-
ficients. Time-varying average frequency of the seismic data can also be estimated
from the time-frequency map calculated by our method. We tested the method
on benchmark synthetic signals and compared it with the well-known Strans-
form. Two field data examples showed applications of the proposed method for
delineation of sand channels and for detection of low-frequency anomalies.

INTRODUCTION

Time-frequency decomposition maps a 1D signal into a 2D signal of time and fre-
quency, and describes how the spectral content of the signal changes with time.
Time-frequency analysis has been used extensively in seismic data processing and
interpretation, including attenuation measurement (Reine et al., 2009), direct hydro-
carbon detection (Castagna et al., 2003), and stratigraphic mapping (Partyka et al.,
1998). The widely used short-time Fourier transform (STFT) method produces a
time-frequency spectrum by taking the Fourier transform of data windows (Cohen,
1995), which leads to a tradeoff between temporal and spectral resolution.

Over the past two decades, wavelet-based methods have been applied to time-
frequency analysis of seismic data. Chakraborty and Okaya (1995) compare wavelet-
based with Fourier-based methods for performing time-frequency analysis on seismic
data and showed that the wavelet-based method improves spectral resolution. The
continuous-wavelet transform (CWT) provides a time-scale map, known as a scalo-
gram (Rioul and Vetterli, 1991), rather than a time-frequency spectrum. Because a
scale represents a frequency band, Hlawatsch and Boudreaux-Bartels (1992) choose
their scale to be inversely proportional to the center frequency of the wavelet, which
allowed them to transform their scalogram into a time-frequency map. Sinha et al.
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(2005) provide a novel method of obtaining such a time-frequency map by taking a
Fourier transform of the inverse CWT.

Wigner-Ville distribution (WVD) (Wigner, 1932) represents time-frequency com-
ponents by using the reverse of the signal as an analysis window function. WVD varies
resolution in the time-frequency plane by providing good temporal resolution at high
frequencies and good frequency resolution at a low-frequency (Cohen, 1989). Appli-
cations of WVD are hindered by cross-term interference, which can be suppressed
by using appropriate kernel functions. A smoothed pseudo-WVD with independent
time and frequency functions as kernels achieves a relatively good resolution in both
time and frequency (Li and Zheng, 2008). Wu and Liu (2009) employed smoothed
pseudo-WVD with a Gaussian kernel function to reduce cross-term interference.

The S-transform is an invertible time-frequency analysis technique that combines
elements of wavelet transforms and short-time Fourier transforms. The S-transform
with an arbitrary and varying shape was applied to seismic data analysis by Pinnegar
and Mansinha (2003). Matching pursuit (Mallat and Zhang, 1993), which was also
applied in seismic signal analysis (Chakraborty and Okaya, 1995; Castagna et al.,
2003; Liu et al., 2004; Liu and Marfurt, 2005; Wang, 2007), decomposes a seismic
trace into a series of wavelets that belong to a comprehensive dictionary of functions.
These wavelets are selected so as to best match signal structures. The spectrum of
the signal is then the time-shifted sum of each of the wavelets.

Local attributes (Fomel, 2007a) can adaptively measure timevarying seismic signal
characteristics in the neighborhood of each data point. Local attributes have been
successfully applied to seismic image registration (Fomel and Jin, 2009), phase detec-
tion (van der Baan and Fomel, 2009; Fomel and van der Baan, 2009), and stacking
(Liu et al., 2009, 2011b). A natural extension of local attributes, regularized nonsta-
tionary regression, decomposes input data into a number of nonstationary components
(Fomel, 2009; Liu and Fomel, 2010; Liu et al., 2011a).

In this paper, we propose a new method of time-frequency analysis in which we use
time-varying Fourier coefficients to define a time-frequency map. As in regularized
nonstationary regression, shaping regularization (Fomel, 2007b) constrains continu-
ity and smoothness of the coefficients. Given the close connection between Fourier
transforms and the least-squares norm, the least-squares approach to time-frequency
analysis is not new, having been used previously, for example, by Youn and Kim
(1985). What is novel about our approach is the use of regularization for explicitly
controlling the time resolution of time-frequency representations.

The paper is organized as follows.We first describe the proposed method for time-
frequency analysis. Then we show how to compute the time-varying average frequency
from the time-frequency map. We use benchmark synthetic examples to test the
performance of the proposed method. Finally, we apply the proposed method to
channel detection and low-frequency anomaly detection in field seismic data.
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TIME-FREQUENCY ANALYSIS USING LOCAL
ATTRIBUTES

The Fourier transform has found various applications in signal analysis. The classic
Fourier transform indicates the presence of different frequencies within the analysis
window, but does not show where in that window the particular frequency components
reside. Localized frequency information can be obtained by computing the Fourier
transform with a temporally shifted window. Such an approach to time-frequency
analysis is known as the STFT (Allen, 1977). The window function is commonly
parameterized by window size, overlap, and taper. Once the window function has
been chosen for the STFT, temporal and spectral resolutions are fixed for the entire
time-frequency map.

The S-transform (Stockwell et al., 1996) is similar to the STFT, but with a
Gaussian-shaped window whose width scales inversely with frequency. The expression
of the S-transform is

S(τ, f) =
∫ ∞
−∞

S(t)

{
|f |√
2π

exp

[
−f 2(τ − t)2

2

]
exp(−2πift)

}
dt, (1)

where s(t) is a signal and τ is a parameter which controls the position of the Gaus-
sian window. The S-transform is conceptually a hybrid of the STFT and wavelet
analysis, containing elements of both but having its own properties. Like STFT, the
S-transform uses a window to localize the complex Fourier sinusoid, but, unlike the
STFT and analogously to the wavelet transform, the width of the window scales with
frequency.

Consider a signal f(x) on [0, L]. The Fourier series, assuming a periodic extension
of the boundary conditions, can be expressed as

f(t) ≈ a0 +
∞∑
k=1

[
ak cos

(
2kπt

L

)
+ bk sin

(
2kπt

L

)]
, (2)

where ak and bK are the series coefficients. The relationship between k and frequency
f is k = Lf . In the case of the discrete Fourier transform, frequency is finite. Letting
Ψk(t) represent the Fourier basis

Ψk(t) =

[
Ψ1k(t)
Ψ2k(t)

]
=

 cos
(
2kπt
L

)
sin

(
2kπt
L

)  , (3)

and Ck represent the series coefficients

Ck = [ak bk] , (4)

where b0 = 0, equation 1 can be written as

f(t) =
∞∑
k=0

CkΨk(t). (5)
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If frequency is finite, the range of k becomes [0, N ], N = kmax = Lfmax. In linear
notation, Ck can be obtained by solving the least-squares problem

min
Ck

∣∣∣∣∣
∣∣∣∣∣f(t)−

N∑
k=0

CkΨk(t)

∣∣∣∣∣
∣∣∣∣∣
2

2

, (6)

where ||||denotes the squared L−2 norm of a function. By allowing coefficients Ck to
change with time t, we can define the timevarying coefficients Ck(t) via the following
least-squares problem

min
Ck

N∑
k=0

||f(t)−CkΨk(t)||22 . (7)

The Fourier coefficient Ck(t) in equation 7 is a function of time t and frequency
f = kL and Ck(t) = [ak bk]. The numerical support of frequency f can be between
zero and the Nyquist frequency (Cohen, 1995), and the interval of frequency can be
∆f = 1L. In practical applications, the range of frequencies can also be assigned by
the user. In matrix notation, equation 7 can be written as

[f(t) f(t)... f(t)]T ≈ [D {Ψ1(t) ... ΨN(t)}] [C1(t) ... CN(t)]T , (8)

where D{...} denotes a diagonal matrix which is composed from the elements of
Psik(t).

The problem of minimization in equation 7 is mathematically ill-posed because it
is severely underconstrained: There are more unknown variables than constraints. To
solve this ill-posed problem, we force the coefficients Ck(t) to have a desired behavior,
such as smoothness. With the addition of a regularization term, equation 7 becomes

min
Ck(t)

N∑
k=0

||f(t)−Ck(t)Ψk(t)||22 +R [Ck(t)] , (9)

where R denotes the regularization operator. If we use classic Tikhonov regularization
(Tikhonov, 1963), equation 9 can be written as

min
Ck(t)

N∑
k=0

||f(t)−Ck(t)Ψk(t)||22 + ε2
N∑
k=0

||D [Ck(t)]||22 , (10)

where D is the Tikhonov regularization operator (roughening operator) and ε is a
scalar regularization parameter.

Shaping regularization (Fomel, 2007b) provides a particularly convenient method
of enforcing smoothness in iterative optimization schemes. In the appendix, we re-
view the method of shaping regularization in detail. Fomel (2009) used shaping
regularization to constrain the problem of nonstationary regression. In this paper,
we use shaping regularization, analogous to the problem of nonstationary regression,
to constrain estimated coefficients. We choose our shaping operator to be Gaussian
smoothing with an adjustable radius. In shaping regularization, the radius of the
Gaussian smoothing operator controls the smoothness of coefficients Ck(t).
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Once we obtain time-varying Fourier coefficients Ck(t) = [ak(t) bk(t)], the time-
frequency map is defined as

F (t, f = k/L) =
√
a2k(t) + b2k(t). (11)

It is also possible to do an invertible time-frequency transform, as shown by Liu and
Liu and Fomel (2010).

Consider a simple signal (Figure 1a), which includes three monophonic compo-
nents at 10, 20, and 30 Hz and two broad-band spikes at 2 and 2.3 s. Time-frequency
maps generated by the S-transform and our method are shown, respectively, in Fig-
ure 1b and 1c. Frequency components appear to be represented well from low to
high frequencies in the proposed method. In comparison with the S-transform, the
proposed method provides superior resolution for monophonic waves. At the lower
frequencies, the S-transform is as good as the proposed method on the spectral res-
olution for monophonic waves. Note that the S-transform represents spikes better at
high frequencies. However, because the width of analysis window is large at low fre-
quencies, the S-transform provides poor time resolution at low frequencies for spikes.
When we use the shaping operator as a regularization term, there is an edge effect
from smoothing, which appears near 0 s and 4 s (Figure 1c). Figure 1d displays
the time-frequency map using a different parameter (30-point smoothing radius) to
demonstrate adjustable time-frequency representation of the proposed method.

To show the effect of varying frequencies, we provide a composite chirp signal (Fig-
ure 2a), which includes two parabolic frequencies, each having a constant amplitude.
Figure 2b and 2c shows the results of the S-transform and the proposed method with
10-point smoothing radius, respectively. The two frequency components are detected
with higher time and frequency resolution by our method. The S-transform has high
spectral resolution near low frequencies, but loses resolution at high frequencies. Res-
olution of the time-frequency map deteriorates in both methods when the curvature
of the time-frequency curve becomes large (as indicated by the arrow).

In the proposed method, the smoothing radius used in shaping regularization is
a parameter which controls the smoothness of the model. It is different from the
method of the STFT and the S-transform, in which division into local windows is
applied to the data to localize frequency content in time. In contrast to the wavelet-
based methods (Chakraborty and Okaya, 1995; Sinha et al., 2005; Wang, 2007), our
method, as a straightforward extension of the classic Fourier analysis, is different
because of the choice of basis functions. The wavelet-based methods need to decide
the wavelets, which can be regarded as patterns of seismic data. The closer the
selected wavelets are to the true pattern of the input data, the better the result of the
time-frequency analysis. In this paper, we use more general Fourier basis functions
to compute the time-frequency map.
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a

b

c

d

Figure 1: (a) Synthetic signal with three constant frequency components and two
spikes. (b) Time-frequency map of the S-transform. (c) Time-frequency map of the
proposed method with smoothing radius of 15 points. (d) Time-frequency map of the
proposed method with smoothing radius of 30 points.

GEO-2011



Liu etc. 7 Time-frequency analysis

a

b

c

Figure 2: (a) Synthetic chirp signal with two parabolic frequency changes. (b) Time-
frequency map of the S-transform. (c) Time-frequency map of the proposed method.
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ESTIMATION OF TIME-VARYING AVERAGE
FREQUENCY

Seismic instantaneous frequency is the derivative of the instantaneous phase

fi(t) =
1

2π

dφ(t)

dt
, (12)

where φ(t) is the instantaneous phase. Instantaneous frequency can be estimated
directly using a discrete form of equation 12. This estimate is highly susceptible to
noise. Fomel (2007a) modified the definition of instantaneous frequency to that of
a local frequency by recognizing it as a form of regularized inversion, and by using
regularization to constrain continuity and smoothness of the output.

Average frequency can be estimated from the time-frequency map (Claasen and
Mecklenbruker, 1980; Cohen, 1989; Hlawatsch and Boudreaux-Bartels, 1992; Steeghs
and Drijkoningen, 2001; Sinha et al., 2009). Average frequency at a given time is

fa(t) =

∫
fF 2(f, t)df∫
F 2(f, t)df

, (13)

where F (f, t) is the time-frequency map. Average frequency measured by equation
13 is the first moment along the frequency axis of a time-frequency power spectrum.
Saha (1987) and Brian et al. (1993) analyzed the relationship between instantaneous
frequency and the time-frequency map in detail. Extraction of the attributes from
the time-frequency map of the seismic trace leads to considerable improvement of the
signal-to-noise ratio of the attributes (Steeghs and Drijkoningen, 2001). We therefore
propose applying equation 13 to our time-frequency map to compute the time-varying
average frequency.

We used a synthetic nonstationary seismic trace to illustrate our approach to es-
timating time-varying average frequency. Figure 3b shows a synthetic seismic trace
generated by nonstationary convolution (Margrave, 1998) of a random reflectivity se-
ries (Figure 3a) using a Ricker wavelet, the dominant frequency of which is a function
of time, fd = 25t2 + 15. Figure 9 shows the scaled spectrum of the Ricker wavelet.
Both the dominant frequency (white line in Figure 9 and the bandwidth increase
with time. We computed the average frequency (black line in Figure 9 using equa-
tion 13 from the scaled spectrum of Ricker wavelets. We note that average frequency
is larger than the dominant frequency at high frequencies for Ricker wavelets.

We generated the time-frequency map of the synthetic nonstationary seismic trace
using the S-transform (Figure 4b) and the proposed method with a 10-point smooth-
ing radius (Figure 4c). We observe that the time-frequency map by the proposed
method has a bandwidth more similar to that of the time-frequency map of the Ricker
wavelet (Figure 9), especially at the high frequencies. We estimated time-varying
average frequency curves from the time-frequency map by the proposed method (blue
solid curve in Figure 5) and S-transform (pink dashed curve in Figure 5), respec-
tively. Compared with the theoretical curve (black dashed curve in Figure 5), which
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a

b

Figure 3: (a) Random reflectivity series. (b) Synthetic seismic trace.

a

b

c

Figure 4: (a) Theoretical time-frequency map, which is scaled by a maximum in
the frequency axis. White and black lines indicate dominant frequency and average
frequency of Ricker wavelet, respectively. (b) Time-frequency map of the S-transform.
(c) Time-frequency map of the proposed method.

GEO-2011



Liu etc. 10 Time-frequency analysis

Figure 5: Time-varying average-frequency estimation (blue solid curve: estimated by
our method; pink dashed curve: estimated by S-transform; black dot-dashed curve:
theoretical curve, which is denoted by black line in Figure 9).

was computed using equation 13 on the scaled spectrum of Ricker wavelets (Figure
9), the time-varying average frequency estimated by the proposed method is closer to
the theoretical one.

EXAMPLES

We demonstrate the effectiveness of the proposed time-frequency analysis on a bench-
mark synthetic data set and two field data sets. We first use a synthetic seismic trace
to illustrate how the proposed method obtains a time-frequency map, and then we
test our method on two field data sets with applications to detecting channels and
low-frequency anomalies.

Synthetic data

A synthetic seismic trace (Figure 6a) was obtained by adding Ricker wavelets with
different frequencies and time shifts. The first event is an isolated wavelet with a
frequency of 30 Hz, and the second event consists of a 15-Hz wavelet and a 60-Hz
wavelet overlapping in time. The last event is a superposition of two 50-Hz wavelets
with different arrival times. Figure 6b and 6c show the time-frequency maps by the
S-transform and our method with 15-point smoothing radius, respectively. From the
time-frequency map of the first event at 0.2 s, we found that time duration is long at
low-frequency in the S-transform. The proposed method produces a more temporally
limited ellipsoid spectrum for the first event. Note that the proposed method has
higher spatial resolution at 0.6 s and temporal resolution at 1 s. This simple test
shows that our method can be effective in representing

3D Gulf of Mexico data for channel detection

Detecting channel structures is a common application of spectral decomposition (Par-
tyka et al., 1998). Different frequency slices show different stratigraphic features.
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a
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c

Figure 6: (a) Synthetic seismic trace. (b) Time-frequency map of the S-transform.
(c) Time-frequency map of the proposed method.
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Figure 7 shows field data from the Gulf of Mexico (Lomask et al., 2006). To generate
stratal slices (Zeng et al., 1998), we flattened this data set using predictive painting
(Fomel, 2010). The flattened data set is shown in Figure 8. The flattening procedure
can remove structural distortions and allows the interpreter to see geologic features
as they were emplaced (Lomask et al., 2006). Predictive painting does a careful job
of restoring true geological frequencies, as is evident from vertical sections. Figure 9
shows the average spectrum of the data set before flattening (dashed blue curve)
and after flattening (solid red curve). We calculated the spectral decomposition of
flattened data using the proposed method with a five-point smoothing radius. Fig-
ure 10 shows horizon slices from six different volumes at the same level in reference
time. The horizontal blue lines on Figure 8b and 8c identify where the time slice is.
Comparing seismic amplitudes (Figure 10a) with spectral decomposition at different
frequencies (Figures 10b-f), several channels in 30 Hz slice are easily visible. The
high-frequency spectral-decomposition maps, such as the 30-, 40-, and 50-Hz slices,
can highlight detailed geologic features.

2D data example for low-frequency anomaly detection

Low-frequency anomalies are often attributed to abnormally high attenuation in gas-
filled reservoirs and can be used as a hydrocarbon indicator (Castagna et al., 2003).
A number of studies have investigated possible mechanisms of low-frequency anoma-
lies associated with hydrocarbon reservoirs, but no adequate explanation is accepted
absolutely (Ebrom, 2004; Kazemeini et al., 2009).

Figure 11 shows a poststack field data set with a bandwidth of about 10150 Hz
(Figure 12).We used our proposed method with a ten-point smoothing radius to
generate a time-frequency spectral map. Figure 13 shows the time-frequency map
of one trace from the field data set. Note that our method has a higher temporal
resolution than that of the S-transform, especially at 0.6-0.8 s.We can observe a
general decay of frequency with time caused by seismic attenuation from the time-
frequency map of one trace (Figure 13). The low-frequency anomaly is shown at
1.2-1.3 s (arrows). Figures 14 and 15 show single-frequency sections at 15, 31, and
70 Hz from two methods, the S-transform and the proposed method. We further found
that the proposed method provides higher temporal and spatial resolution, especially
in low-frequency sections. Figures 14a and 15a both show high-amplitude, low-
frequency anomalies (ellipse). However, these anomalies gradually disappear in the
high-frequency section (Figures 14b and 14c and 15b and 14c). Note that the
spatial resolution of low-frequency anomalies in the proposed method (Figure 15a)
is higher than that in the S-transform (Figure 14a). We also computed the time-
varying average frequency section for this example using equation 13 (Figure 16).
We find that the average frequency is about 60 Hz in shallow layers, but 25 Hz in
deep layers. The average frequency of low-frequency anomalies is very low, just about
15 Hz. This example shows that comparison of single low-frequency sections from the
proposed method is able to detect low-frequency anomalies that might be caused

GEO-2011



Liu etc. 13 Time-frequency analysis

Figure 7: Seismic image from Gulf of Mexico. (a) Time slice. (b) Inline section.
(c) Crossline section. Blue lines in (a) identify the location of inline and crossline
sections. The horizontal blue lines in (b) and (c) identify where the time slice is.
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Figure 8: Seismic image from Figure 7 after flattening by predictive painting. (a)
Time slice. (b) Inline section. (c) Crossline section. The blue lines on (a) identify
the location of inline and crossline sections. The horizontal blue lines on (b) and (c)
identify where the time slice is.
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Figure 9: Average data spectrum before flattening (dashed blue curve) and after
flattening (solid red curve).
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a b

c d

e f

Figure 10: Comparison of horizon slices, from four different volumes at the same
level: (a) conventional amplitude; and spectraldecomposition at (b) 10 Hz, (c) 20 Hz,
(d) 30 Hz, (e) 40 Hz, and (f) 50 Hz. The slice of 30 Hz displays most clearly visible
channel features.
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by hydrocarbons, as demonstrated in other studies (Castagna et al., 2003; Korneev
et al., 2004; Zhenhua et al., 2008). What we demonstrate by this example is that the
proposed method can be used to detect low-frequency anomalies in seismic sections.
Well control is generally needed to interpret this section more accurately.

Figure 11: A field marine seismic data set.

Figure 12: The averaged Fourier spectra of the field data.

CONCLUSION

We have presented a novel numerical method for computing time-frequency represen-
tation using least-squares inversion with shaping regularization. This time-frequency-
analysis technology can be applied to nonstationary signal analysis. The method is
a straightforward extension of the classic Fourier analysis. The parameter used in
shaping regularization, the radius of the Gaussian smoothing operator, controls the
smoothness of time-varying Fourier coefficients. The smooth time-varying average
frequency attribute can also be estimated from the proposed time-frequency analysis
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a b

Figure 13: Time-frequency map of one trace (denoted by black line in Figure 12).
(a) S-transform; (b) the proposed method.

technology. We have demonstrated applications of the proposed time-frequency anal-
ysis for detecting channels and lowfrequency anomalies in seismic images. Finally, we
realize that many different algorithms are capable of computing time-frequency repre-
sentations. We have provided some comparisons of our method with one of them (the
S-transform) but cannot make the comparison exhaustive and do not claim that our
method will necessarily perform better in all practical situations. Both approaches to
time-frequency analysis have advantages and disadvantages. What we see as the main
advantages of our method are its conceptual simplicity, computational efficiency, and
explicit controls on time and frequency resolution.
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SHAPING REGULARIZATION FOR INVERSE
PROBLEMS

In this appendix, we review the theory of shaping regularization in inversion prob-
lems. Fomel (2007b) introduces shaping regularization, a general method of imposing

GEO-2011



Liu etc. 19 Time-frequency analysis
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Figure 14: Comparison of common-frequency slices from S-transform; (a) 10 Hz, (b)
31 Hz, and (c) 70 Hz. The lowfrequency abnormality is indicated by an ellipse.

GEO-2011



Liu etc. 20 Time-frequency analysis

a

b

c

Figure 15: Comparison of common-frequency slices from the proposed method; (a) 10
Hz, (b) 31 Hz, and (c) 70 Hz. The lowfrequency abnormity is indicated by an ellipse.
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Figure 16: Estimated time-varying average frequency of the field data from time-
frequency map.

regularization constraints. A shaping operator provides an explicit mapping of the
model to the space of acceptable models.

Consider a system of linear equation given as Ax = b, where A is a forward-
modeling operator, x is the model, and b is the data. By equation 8, we can find
that the proposed time-frequency decomposition can be written as the form Ax = b.
The standard regularized least-squares approach to solving this equation seeks to
minimize ||Ax = b||22 + ε2 ||Dx||22, where D is the Tikhonov regularization operator
(Tikhonov, 1963) and ε is scaling.

The formal solution, denoted by x̂, is given by

x̂ =
(
ATA + ε2DTD

)−1
ATb, (A-1)

where AT denotes the adjoint operator. Fomel (2007b) defined a relation between a
shaping operator S and a regularization operator D as

S =
(
I + ε2DTD

)−1
. (A-2)

Substituting equation A-2 into equation A-1 yields a formal solution of the estimation
problem regularization by shaping

x̂ =
(
ATA + S−1 − I

)−1
ATb =

[
I + S

(
ATA− I

)]−1
SATb. (A-3)

Introducing scaling of A by 1 in equation A-3 , we obtain

x̂ =
[
λ2I + S

(
ATA− λ2I

)]−1
SATb. (A-4)

The conjugate-gradient method can be used to compute the inversion in equation
A-4 iteratively. As shown by Fomel (2009), the iterative convergence for inversion in
equation A-4 can be dramatically faster that the one in equation A-1.
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The main advantage of shaping regularization is the relative ease of controlling the
selection of λ and SS in comparison with ε and D cite[]Fomel2009. In this paper, we
choose λ to be the median value of Ψk(t) and the shaping operator to be a Gaussian
smoothing operator. The Gaussian smoothing operator is a convolution operator with
the Gaussian function that is used to smooth images and remove detail and noise. In
this sense it is similar to the mean filter, but it uses a different kernel to represent the
shape of a Gaussian (bell-shaped) hump. The Gaussian function in 1D has the form,

G(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. (A-5)

One can implement Gaussian smoothing by Gaussian filtering in either the frequency
domain or time domain. Fomel (2007b) shows that repeated application of triangle
smoothing can also be used to implement Gaussian smoothing efficiently, in which
case the only additional parameter is the radius of the triangle smoothing operator.
In this paper, we use the repeated triangle smoothing operator to implement the
Gaussian smoothing operator.

The computational cost of generating a time-frequency representation with our
method is O (NtNfNiter/Np), where Nt is the number of time samples, Nf is the
number of frequencies, Niter is the number of conjugate-gradient iterations, Np is
the number of processors used to process different frequencies in parallel, and Niter

decreases with the increase of smoothing and is typically around 10.
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