
A graphics processing unit implementation of

time-domain full-waveform inversiona

aPublished in Geophysics, 80, no. 3, F31-F39, (2015)

Pengliang Yang∗, Jinghuai Gao∗, and Baoli Wang† ∗

ABSTRACT

The graphics processing unit (GPU) has become a popular device for seismic
imaging and inversion due to its superior speedup performance. In this paper
we implement GPU-based full waveform inversion (FWI) using the wavefield
reconstruction strategy. Because the computation on GPU is much faster than
CPU-GPU data communication, in our implementation the boundaries of the
forward modeling are saved on the device to avert the issue of data transfer
between host and device. The Clayton-Enquist absorbing boundary is adopted
to maintain the efficiency of GPU computation. A hybrid nonlinear conjugate
gradient algorithm combined with the parallel reduction scheme is utilized to do
computation in GPU blocks. The numerical results confirm the validity of our
implementation.

INTRODUCTION

The classical time-domain full waveform inversion (FWI) was originally proposed
by Tarantola (1984) to refine the velocity model by minimizing the energy in the
difference between predicted and observed data in the least-squares sense (Symes,
2008). It was further developed by Tarantola (1986) with applications to elastic cases
(Pica et al., 1990). After Pratt et al. (1998) proposed frequency domain FWI, the
multiscale inversion became an area of active research, and provided a hierarchical
framework for robust inversion. The Laplace-domain FWI and the Laplace-Fourier
domain variant have also been developed by Shin and Cha (2008, 2009). Until now,
building a good velocity model is still a challenging problem and attracts increasing
effort of geophysicists (Virieux and Operto, 2009).

There are many drawbacks in FWI, such as the non-linearity, the non-uniqueness
of the solution, as well as the expensive computational cost. The goal of FWI is to
match the synthetic and the observed data. The minimization of the misfit func-
tion is essentially an iterative, computationally intensive procedure: at each iteration
one has to calculate the gradient of the objective function with respect to the model

∗e-mail: ypl.2100@gmail.com, jhgao@mail.xjtu.edu

Yang et al. 2 GPU implementation of FWI

parameters by cross correlating the back propagated residual wavefield with the corre-
sponding forward propagated source wavefield. The forward modeling itself demands
large computational efforts, while back propagation of the residual wavefield has large
memory requirements to access the source wavefield.

Recent advances in computing capability and hardware makes FWI a popular
research subject to improve velocity models. As a booming technology, graphics
processing unit (GPU) has been widely used to mitigate the computational drawbacks
in seismic imaging (Micikevicius, 2009; Yang et al., 2014) and inversion (Boonyasiriwat
et al., 2010; Shin et al., 2014), due to its potential gain in performance. One key
problem for GPU implementation is that the parallel computation is much faster
while the data communication between host and device always takes longer time.
In this paper we report a 2D implementation of GPU-based FWI using a wavefield
reconstruction strategy. The boundaries of the forward modeling are saved on the
device to avert the issue of CPU-GPU data transfer. Shared memory on the GPU is
used to speedup the modeling computation. A hybrid nonlinear conjugate gradient
method is adopted in the FWI optimization. In each iteration, a Gaussian shaping
step is employed to remove noise in the computed gradient. We demonstrate the
validity and the relatively superior speedup of our GPU implementation of FWI
using the Marmousi model.

FWI AND ITS GPU IMPLEMENTATION

FWI: data mismatch minimization

In the case of constant density, the acoustic wave equation is specified by

1

v2(x)

∂2p(x, t; xs)

∂t2
−∇2p(x, t; xs) = fs(x, t; xs). (1)

where we have set fs(x, t; xs) = f(t′)δ(x − xs)δ(t − t′). According to the above
equation, a misfit vector ∆p = pcal − pobs can be defined by the differences at the
receiver positions between the recorded seismic data pobs and the modeled seismic
data pcal = f(m) for each source-receiver pair of the seismic survey. Here, in the
simplest acoustic velocity inversion, f(·) indicates the forward modeling process while
m corresponds to the velocity model to be determined. The goal of FWI is to match
the data misfit by iteratively updating the velocity model. The objective function
taking the least-squares norm of the misfit vector ∆p is given by

E(m) =
1

2
∆p†∆p =

1

2
‖pcal−pobs‖2 =

1

2

ng∑
r=1

ns∑
s=1

∫ tmax

0

dt|pcal(xr, t; xs)−pobs(xr, t; xs)|2

(2)
where ns and ng are the number of sources and geophones, † denotes the adjoint
operator (conjugate transpose). The recorded seismic data is only a small subset of
the whole wavefield at the locations specified by sources and receivers.

Yang et al. 3 GPU implementation of FWI

The gradient-based minimization method updates the velocity model according
to a descent direction dk:

mk+1 = mk + αkdk. (3)

where k denotes the iteration number. By neglecting the terms higher than the 2nd
order, the objective function can be expanded as

E(mk+1) = E(mk + αkdk) = E(mk) + αk〈∇E(mk),dk〉+
1

2
α2

kd
†
kHkdk, (4)

where Hk stands for the Hessian matrix; 〈·, ·〉 denotes inner product. Differentiation
of the misfit function E(mk+1) with respect to αk gives

αk = −〈dk,∇E(mk)〉
d†kHkdk

= −〈dk,∇E(mk)〉
〈Jkdk,Jkdk〉

=
〈Jkdk,pobs − pcal〉
〈Jkdk,Jkdk〉

, (5)

in which we use the approximate Hessian Hk := Ha = J†kJk and ∇mE = J†∆p,
according to equation (A-7). A detailed derivation of the minimization process is
given in Appendix A.

Nonlinear conjugate gradient method

The conjugate gradient (CG) algorithm decreases the misfit function along the con-
jugate gradient direction:

dk =

{
−∇E(m0), k = 0

−∇E(mk) + βkdk−1, k ≥ 1
(6)

There are a number of ways to compute βk. We use a hybrid a hybrid scheme combing
Hestenes-Stiefel method and Dai-Yuan method (Hager and Zhang, 2006)

βk = max(0,min(βHS
k , βDY

k)). (7)

in which 
βHS

k =
〈∇E(mk),∇E(mk)−∇E(mk−1)〉
〈dk−1,∇E(mk)−∇E(mk−1)〉

βDY
k =

〈∇E(mk),∇E(mk)〉
〈dk−1,∇E(mk)−∇E(mk−1)〉

(8)

This provides an automatic direction reset while avoiding over-correction of βk in con-
jugate gradient iteration. It reduces to steepest descent method when the subsequent
search directions lose conjugacy. The gradient of the misfit function w.r.t. the model
is given by (Bunks et al., 1995)

∇Em =
2

v3(x)

ng∑
r=1

ns∑
s=1

∫ tmax

0

∂2pcal(x, t; xs)

∂t2
pres(xr, t; xs)dt (9)

Yang et al. 4 GPU implementation of FWI

where pres(x, t; xs) is the back propagated residual wavefield, see the Appendix B
and C for more details. A Gaussian smoothing operation plays an important role in
removing the noise in the computed gradient. A precondition is possible by normal-
izing the gradient by the source illumination which is the energy of forward wavefield
accounting for geometrical divergence (Gauthier et al., 1986; Bai et al., 2014):

∇E(mk) =
∇Em√∑ns

s=1

∫ tmax

0
p2

cal(x, t;xs)dt+ γ2

(10)

where γ is a stability factor to avoid division by zero. To obtain a reasonable step size
αk in equation (5), we estimate a small step length ε proposed by Pica et al. (1990):

max(ε|dk|) 6
max(|mk|)

100
. (11)

and the Taylor approximation

Jkdk ≈
f(mk + εdk)− f(mk)

ε
(12)

We summarize the FWI flowchart in Figure 1.

Wavefield reconstruction via boundary saving

One key problem of GPU-based implementations of FWI is that the computation
is always much faster than the data transfer between the host and device. Many
researchers choose to reconstruct the source wavefield instead of storing the modeling
time history on the disk, just saving the boundaries (Dussaud et al., 2008; Yang et al.,
2014). For 2N -th order finite difference, regular grid scheme needs to save N points on
each side (Dussaud et al., 2008), while staggered-grid scheme required at least 2N−1
points on each side (Yang et al., 2014). In our implementation, we use 2nd order
regular grid finite difference because FWI begins with a rough model and velocity
refinement is mainly carried out during the optimization. Furthermore, high-order
finite differences and staggered-grid schemes do not necessarily lead to FWI converge
to an accurate solution while requiring more compute resources. A key observation
for wavefield reconstruction is that one can reuse the same template by exchanging
the role of pk+1 and pk−1. In other words, for forward modeling we use

pk+1 = 2pk − pk−1 + v2∆t2∇2pk. (13)

while for backward reconstruction we use

pk−1 = 2pk − pk+1 + v2∆t2∇2pk. (14)

The wavefield extrapolation can be stepped efficiently via pointer swap, i.e.,

for ix, iz... p0(:) = 2p1(:)− p0(:) + v2(:)∆t2∇2p1(:)

ptr = p0; p0 = p1; p1 = ptr; //swap pointer
(15)

Yang et al. 5 GPU implementation of FWI

initialize
with starting

model

k<niter?
output

FWI result

1)generate synthetic seismo-
gram via modeling, 2) save the

effective boundaries, and 3)
compute the residual wavefield

1)reconstruct source wavefield
with saved boundaries, 2)back
propagate residual wavefield,
and 3) calculate the gradient

is<ns?
loop over

shots: is++

calculate
βk and the
conjugate
gradient

estimate trial
stepsize ε
and a test
velocity

estimate
stepsize αk:
redo forward

modeling
(ns shots)

update
velocity

model, k++

Yes

Yes

No

No

Figure 1: Backward reconstruction can be realized using the saved boundaries. Note
that no absorbing boundary condition is applied on the top boundary of the model
in the forward modeling.

Yang et al. 6 GPU implementation of FWI

where (:) = [ix, iz], p0 and p1 are pk+1/pk−1 and pk, respectively.

Note that all the computation is done on GPU blocks. In our codes, the size
of the block is set to be 16x16. We replicate the right- and bottom-most cols/rows
enough times to bring the total model size up to an even multiple of block size. As
shown in Figure 2, the whole computation area is divided into 16x16 blocks. For
each block, we use a 18x18 shared memory array to cover all the grid points in this
block. It implies that we add a redundant point on each side, which stores the value
from other blocks, as marked by the window in Figure 2. When the computation
is not performed for the interior blocks, special care needs to be paid to the choice
of absorbing boundary condition (ABC) in the design of FWI codes. Allowing for
efficient GPU implementation, we use the 45o Clayton-Enquist ABC proposed in
Clayton and Engquist (1977) and Engquist and Majda (1977). For the left boundary,
it is

∂2p

∂x∂t
− 1

v

∂2p

∂t2
=
v

2

∂2p

∂z2
(16)

which requires only one layer to be saved on each side for wavefield reconstruction.
The equations for right and bottom boundary can also be written in a similar way.
To simulate free surface boundary condition, no ABC is applied to the top boundary.
The same technique has been adopted by Liu et al. (2013) for reverse time migration.
We believe its application to FWI is valuable and straightforward.

x

z

Figure 2: 2D blocks in GPU memory. The marked window indicates that the shared
memory in every block needs to be extended on each side with halo ghost points
storing the grid value from other blocks.

Yang et al. 7 GPU implementation of FWI

Parallel reduction on CUDA blocks

Recognizing that hardware serializes divergent thread execution within the same
warp, but all threads within a warp must complete execution before that warp can
end, we use a parallel reduction technique to find the maximum of the model vector
mk and the descent vector dk, as well as summation for the inner product in the
numerator and the denominator of αk. A sequential addressing scheme is utilized be-
cause it is free of conflict (Harris et al., 2007). As shown in Figure 3, parallel reduction
approach builds a summation tree to do stepwise partial sums. In each level half of
the threads will perform reading from global memory and writing to shared memory.
The required number of threads will decrease to be half of previous level. It reduces
the serial computational complexity from O(N) to O(log2(N)): In each step many
threads perform computation simultaneously, leading to low arithmetic intensity. In
this way, we expect a significant improvement in computational efficiency.

Figure 3: Parallel reduction on GPU block. It reduces a serial computational com-
plexity O(N) to be O(log2(N)) steps: in each step many threads perform computation
simultaneously, leading to low arithmetic intensity.

NUMERICAL RESULTS

Exact reconstruction with saved boundaries

Since we are advocating the wavefield reconstruction method in FWI, the foremost
thing is to demonstrate that the boundary saving strategy does not introduce any
kind of errors or artifacts for the wavefield to be reconstructed. To attain this goal, we
design a constant velocity model: velocity=2000 m/s, nz = nx = 200, ∆z = ∆x = 5

Yang et al. 8 GPU implementation of FWI

m. A 15 Hz Ricker wavelet is taken as the source and is placed at the center of the
model. We do the modeling process for 1000 steps with time interval ∆t = 1 ms. We
record the modeled wavefield snap at 0.28 s and 0.4 s, as shown in the top panels of
Figure 4. The figure shows that at time 0.4 s, the wavefield has already spread to the
boundaries which absorb most of the reflection energy. In the backward steps, the
reconstructed shot snaps at 0.4 s and 0.28 s are also recorded, shown in the bottom
panels of Figure 4. As can be seen from the figure, the backward reconstruction
starts from the boundaries (bottom left) and gradually recovers the interior wavefield
(bottom right).

Figure 4: Backward reconstruction can be realized using the saved boundaries. Note
that no absorbing boundary condition is applied on the top boundary of the model
in the forward modeling.

Speedup performance

The acceleration of GPU implementation on advanced computer hardware is a key
concern of many researchers. There are many factors which may accelerate the FWI
computation. Compared with saving the wavefield on disk, wavefield reconstruction
will accelerate the GPU computing because no CPU-GPU data transfer is needed
any more. The parallel reduction to find the maxium value of model vector mk

and descent direction vector dk is another factor to speedup the FWI computation.

Yang et al. 9 GPU implementation of FWI

However, among these factors, the forward modeling takes most of the computing
time. Each iteration needs four times of forward modeling: two of them are for
sources and receivers; one is performed for wavefield reconstruction and gradient
calculation, and another one is to estimate the step length αk. Therefore, we only
focus on the speedup obtained in the forward modeling procedure.

To do the performance analysis, we run the sequential implementation CPU code
and parallel multi-thread GPU code of forward modeling for 1000 time steps. We
estimate the average time cost of 5 shots for different data sizes. Because the GPU
block size is set to be 16x16. To make the comparison fair, we generate test models
whose size is of multiple 16x16 blocks. The size of the test model is choosen to be
nx · nz, nx = nz = i · 160, where i = 1, . . . , 7 is an integer. We only have a NVS5400
GPU card (compute capability 2.1, GDDR3) run on a laptop. Even so, compared
with sequential implementation on host, we still achieve approximately 5.5–6 times
speedup on the GPU device, as shown in Figure 5.

Figure 5: Comparison of the time cost for CPU- vs. GPU implementation under
different model sizes with one shot, 1000 time steps of forward modeling.

Marmousi model

We use the Marmousi model for the benchmark test, as shown in the top panel of
Figure 6. FWI tacitly requires a good starting model incorporated with low frequency
information. 21 shots are deployed as the observations in the FWI, while 3 of them
are shown in Figure 7. We use a starting model (bottom panel of Figure 6) obtained
by smoothing the original model 20 times with a 5x5 window.

The FWI is carried out for 300 iterations. A 10 Hz Ricker wavelet is deployed in our
modeling and inversion. We record all the updated velocity to make sure the velocity

Yang et al. 10 GPU implementation of FWI

refinement is going on during the iterative procedure. The updated velocity model
at iterations 1, 20, 50, 100, 180 and 300 is displayed in Figure 8. Figure 9 describes
the decreasing misfit function in iterations. As can be seen from the Figures 8 and 9,
the velocity model changes significantly at the early stage. Later iterations in FWI
make some improvement on small details for the velocity model. More iterations will
refine the model further, however, gaining less and less improvement.

Figure 6: Top: The original Marmousi is downsampled by a factor of 3 along depth
and lateral direction. The shots are generated according to the subsampled Marmousi
model. Bottom: The starting model of FWI for Marmousi model, which is obtained
by smoothing the original model 20 times with a 5x5 window.

CONCLUSION

We have implemented GPU-based FWI using the wavefield reconstruction strategy,
which averts the issue of CPU-GPU data transfer. The Clayton-Enquist absorbing
boundary was utilized to maintain the efficiency of GPU computation. A hybrid
nonlinear conjugate gradient method combined with parallel reduction technique was

Yang et al. 11 GPU implementation of FWI

Figure 7: 21 shots were deployed in the FWI. Here, shots 4, 11 and 17 are shown
from left to right.

Figure 8: The updated velocity model at iterations 1, 20, 50, 100, 180 and 300.

Yang et al. 12 GPU implementation of FWI

Figure 9: The misfit function decreases with iteration.

adopted in the FWI optimization. The validity of our implementation for GPU-based
FWI was demonstrated using a numerical test.

DISCUSSION

It is important to point out that FWI can be accelerated in many ways. A good
choice of preconditioning operator may lead to fast convergence rate and geologically
consistent results (Virieux and Operto, 2009; Ayeni et al., 2009; Guitton et al., 2012).
Multishooting and source encoding method is also a possible solution for accelerating
FWI (Schiemenz and Igel, 2013; Moghaddam et al., 2013). These techniques can be
combined with GPU implementation (Wang et al., 2011). There are many reports
advocating their acceleration performance based on particular GPU hardware. These
reports may be out of date soon once the more powerful and advanced GPU product
are released. Although the speedup performance of our implementation may be a
little poor due to our hardware condition, we believe that it is useful to give readers
the implementation code to do performance analysis using their own GPU cards. The
current GPU-based FWI implementation parallelizes the forward modeling process
which makes it possible to run FWI on a single node and low-level GPU condition even
for a laptop. However, it is completely possible to obtain higher speedup performance
using the latest, high performance GPU products, and further parallelize the code on
multi-GPU architectures using message passing interface (MPI) programming.

Yang et al. 13 GPU implementation of FWI

ACKNOWLEDGMENTS

The work of the first author is supported by China Scholarship Council during his
visit to Bureau of Economic Geology, The University of Texas at Austin. This work
is sponsored by National Science Foundation of China (No. 41390454). Thanks
go to IFP for the Marmousi model. We wish to thank Sergey Fomel for valuable
help to incorporate the codes into Madagascar software package (Fomel et al., 2013)
(http://www.ahay.org), which makes all the numerical examples reproducible. The
paper is substantially improved according to the suggestions of Joe Dellinger, Robin
Weiss and two other reviewers.

APPENDIX A

MISFIT FUNCTION MINIMIZATION

Here, we mainly follow the delineations of FWI by Pratt et al. (1998) and Virieux and
Operto (2009).The minimum of the misfit function E(m) is sought in the vicinity of
the starting model m0. The FWI is essentially a local optimization. In the framework
of the Born approximation, we assume that the updated model m of dimension M
can be written as the sum of the starting model m0 plus a perturbation model ∆m:
m = m0 + ∆m. In the following, we assume that m is real valued.

A second-order Taylor-Lagrange development of the misfit function in the vicinity
of m0 gives the expression

E(m0+∆m) = E(m0)+
M∑
i=1

∂E(m0)

∂mi

∆mi+
1

2

M∑
i=1

M∑
j=1

∂2E(m0)

∂mi∂mj

∆mi∆mj+O(||∆m||3)

(A-1)
Taking the derivative with respect to the model parameter mi results in

∂E(m)

∂mi

=
∂E(m0)

∂mi

+
M∑

j=1

∂2E(m0)

∂mj∂mi

∆mj, i = 1, 2, . . . ,M. (A-2)

Equation (A-2) can be abbreviated as

∂E(m)

∂m
=
∂E(m0)

∂m
+
∂2E(m0)

∂m2
∆m (A-3)

Thus,

∆m = −
(
∂2E(m0)

∂m2

)−1
∂E(m0)

∂m
= −H−1∇Em (A-4)

where

∇Em =
∂E(m0)

∂m
=

[
∂E(m0)

∂m1

,
∂E(m0)

∂m2

, . . . ,
∂E(m0)

∂mM

]T

(A-5)

http://www.ahay.org

Yang et al. 14 GPU implementation of FWI

and

H =
∂2E(m0)

∂m2
=

(
∂2E(m0)

∂mi∂mj

)
(A-6)

∇Em and H are the gradient vector and the Hessian matrix, respectively.

∇Em = ∇E(m) =
∂E(m)

∂m
= Re

[(
∂f(m)

∂m

)†
∆p

]
= Re

[
J†∆p

]
(A-7)

where Re takes the real part, and J = ∂f(m)
∂m

is the Jacobian matrix, i.e., the sensitivity
or the Frchet derivative matrix.

In matrix form

H =
∂2E(m)

∂m2
= Re

[
J†J
]

+ Re

[
∂JT

∂mT
(∆p∗,∆p∗, . . . ,∆p∗)

]
. (A-8)

In the Gauss-Newton method, this second-order term is neglected for nonlinear inverse
problems. In the following, the remaining term in the Hessian, i.e., Ha = Re[J†J],
is referred to as the approximate Hessian. It is the auto-correlation of the derivative
wavefield. Equation (A-4) becomes

∆m = −H−1∇Em = −H−1
a Re[J†∆p]. (A-9)

To guarantee the stability of the algorithm (avoiding the singularity), we may use
H = Ha + ηI, leading to

∆m = −H−1∇Em = −(Ha + ηI)−1Re
[
J†∆p

]
. (A-10)

Alternatively, the inverse of the Hessian in equation (A-4) can be replaced by H =
Ha ≈ µI, leading to the gradient or steepest-descent method:

∆m = −µ−1∇Em = −α∇Em = −αRe
[
J†∆p

]
. (A-11)

where α = µ−1.

APPENDIX B

FRÉCHET DERIVATIVE

Recall that the basic acoustic wave equation reads

1

v2(x)

∂2p(x, t; xs)

∂t2
−∇2p(x, t; xs) = fs(x, t; xs).

Yang et al. 15 GPU implementation of FWI

The Green’s function G(x, t; xs, t
′) is defined by

1

v2(x)

∂2G(x, t; xs, t
′)

∂t2
−∇2G(x, t; xs, t

′) = δ(x− xs)δ(t− t′). (B-1)

Thus the integral representation of the solution can be given by (Tarantola, 1984)

p(xr, t; xs) =

∫
V

dx

∫
dt′G(xr, t; x, t

′)f(x, t′; xs)

=

∫
V

dx

∫
dt′G(xr, t− t′; x, 0)f(x, t′; xs)(Causility of Green′s function)

=

∫
V

dxG(xr, t; x, 0) ∗ f(x, t; xs)

(B-2)

where ∗ denotes the convolution operator.

A perturbation v(x)→ v(x) + ∆v(x) will produce a field p(x, t; xs) + ∆p(x, t; xs)
defined by

1

(v(x) + ∆v(x))2

∂2[p(x, t; xs) + ∆p(x, t; xs)]

∂t2
−∇2[p(x, t; xs)+∆p(x, t; xs)] = fs(x, t; xs)

(B-3)
Note that

1

(v(x) + ∆v(x))2
=

1

v2(x)
− 2∆v(x)

v3(x)
+O(∆2v(x)) (B-4)

Equation (B-3) subtracts equation (1), yielding

1

v2(x)

∂2∆p(x, t; xs)

∂t2
−∇2∆p(x, t; xs) =

∂2[p(x, t; xs) + ∆p(x, t; xs)]

∂t2
2∆v(x)

v3(x)
(B-5)

Using the Born approximation, equation (B-5) becomes

1

v2(x)

∂2∆p(x, t; xs)

∂t2
−∇2∆p(x, t; xs) =

∂2p(x, t; xs)

∂t2
2∆v(x)

v3(x)
(B-6)

Again, based on integral representation, we obtain

∆p(xr, t; xs) =

∫
V

dxG(xr, t; x, 0) ∗ ∂
2p(x, t; xs)

∂t2
2∆v(x)

v3(x)
. (B-7)

Yang et al. 16 GPU implementation of FWI

APPENDIX C

GRADIENT COMPUTATION

In terms of equation (2),

∂E(m)

∂mi

=
1

2

ng∑
r=1

ns∑
s=1

∫
dt

[(
∂pcal

∂mi

)
(pcal − pobs)

∗ +

(
∂pcal

∂mi

)∗
(pcal − pobs)

]

=

ng∑
r=1

ns∑
s=1

∫
dtRe

[(
∂pcal

∂mi

)∗
∆p

]
(∆p = pcal − pobs)

= Re

[(
∂pcal

∂mi

)†
∆p

]
= Re

[(
∂f(m)

∂mi

)†
∆p

]
, i = 1, 2, . . . ,M.

(C-1)

According to the previous section, it follows that

∂pcal

∂vi(x)
=

∫
V

dxG(xr, t; x, 0)∗p̈(x, t; xs)
2

v3(x)
=

∫
V

dxG(xr, t; x, 0)∗∂
2p(x, t; xs)

∂t2
2

v3(x)
.

(C-2)
The convolution guarantees∫

dt[g(t) ∗ f(t)]h(t) =

∫
dtf(t)[g(−t) ∗ h(t)]. (C-3)

Then, equation (C-1) becomes

∂E(m)

∂mi

=

ng∑
r=1

ns∑
s=1

∫
dtRe

[(
∂pcal

∂mi

)∗
∆p

]
(∆p = pcal − pobs)

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(∫
V

dxG(xr, t; x, 0) ∗ ∂
2p(x, t; xs)

∂t2
2

v3(x)

)∗
∆p(xr, t; xs)

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
(

∫
V

dxG(xr,−t; x, 0) ∗∆p(xr, t; xs))

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
(

∫
V

dxG(xr, 0; x, t) ∗∆p(xr, t; xs))

]

=

ng∑
r=1

ns∑
s=1

∫ tmax

0

dtRe

[(
∂2pcal(x, t; xs)

∂t2
2

v3(x)

)∗
pres(xr, t; xs)

]
(C-4)

where pres(x, t; xs) is a time-reversal wavefield produced using the residual ∆p(xr, t; xs)
as the source. As follows from reciprocity theorem,

pres(x, t; xs) =

∫
V

dxG(xr, 0; x, t) ∗∆p(xr, t; xs) =

∫
V

dxG(x, 0; xr, t) ∗∆p(xr, t; xs).

(C-5)

Yang et al. 17 GPU implementation of FWI

satisfying
1

v2(x)

∂2pres(x, t; xs)

∂t2
−∇2pres(x, t; xs) = ∆p(xr, t; xs). (C-6)

It is noteworthy that an input f and the system impulse response function g are
exchangeable in convolution. That is to say, we can use the system impulse response
function g as the input, the input f as the impulse response function, leading to the
same output. In the seismic modeling and acquisition process, the same seismogram
can be obtained when we shoot at the receiver position xr when recording the seismic
data at position x.

REFERENCES

Ayeni, G., Y. Tang, B. Biondi, et al., 2009, Joint preconditioned least-squares in-
version of simultaneous source time-lapse seismic data sets: Presented at the 2009
SEG Annual Meeting.

Bai, J., D. Yingst, R. Bloor, and J. Leveille, 2014, Viscoacoustic waveform inversion
of velocity structures in the time domain: Geophysics, 79, R103–R119.

Boonyasiriwat, C., G. Zhan, M. Hadwiger, M. Srinivasan, and G. Schuster, 2010,
Multisource reverse-time migration and full-waveform inversion on a GPGPU: Pre-
sented at the 72nd EAGE Conference & Exhibition.

Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seismic wave-
form inversion: Geophysics, 60, 1457–1473.

Clayton, R., and B. Engquist, 1977, Absorbing boundary conditions for acoustic and
elastic wave equations: Bulletin of the Seismological Society of America, 67, 1529–
1540.

Dussaud, E., W. W. Symes, P. Williamson, L. Lemaistre, P. Singer, B. Denel, and A.
Cherrett, 2008, Computational strategies for reverse-time migration: SEG Annual
meeting.

Engquist, B., and A. Majda, 1977, Absorbing boundary conditions for numerical
simulation of waves: Proceedings of the National Academy of Sciences, 74, 1765–
1766.

Fomel, S., P. Sava, I. Vlad, Y. Liu, and V. Bashkardin, 2013, Madagascar: open-source
software project for multidimensional data analysis and reproducible computational
experiments: Journal of Open Research Software, 1, e8.

Gauthier, O., J. Virieux, and A. Tarantola, 1986, Two-dimensional nonlinear inversion
of seismic waveforms: Numerical results: Geophysics, 51, 1387–1403.

Guitton, A., G. Ayeni, and E. Dı́az, 2012, Constrained full-waveform inversion by
model reparameterization 1: Geophysics, 77, R117–R127.

Hager, W. W., and H. Zhang, 2006, A survey of nonlinear conjugate gradient methods:
Pacific journal of Optimization, 2, 35–58.

Harris, M., et al., 2007, Optimizing parallel reduction in cuda: NVIDIA Developer
Technology, 2, 45.

Liu, H., R. Ding, L. Liu, and H. Liu, 2013, Wavefield reconstruction methods for
reverse time migration: Journal of Geophysics and Engineering, 10, 015004.

Yang et al. 18 GPU implementation of FWI

Micikevicius, P., 2009, 3D finite difference computation on GPUs using CUDA: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units, ACM, 79–84.

Moghaddam, P. P., H. Keers, F. J. Herrmann, and W. A. Mulder, 2013, A new
optimization approach for source-encoding full-waveform inversion: Geophysics,
78, R125–R132.

Pica, A., J. Diet, and A. Tarantola, 1990, Nonlinear inversion of seismic reflection
data in a laterally invariant medium: Geophysics, 55, 284–292.

Pratt, G., C. Shin, et al., 1998, Gauss–newton and full newton methods in frequency–
space seismic waveform inversion: Geophysical Journal International, 133, 341–
362.

Schiemenz, A., and H. Igel, 2013, Accelerated 3-D full-waveform inversion using simul-
taneously encoded sources in the time domain: application to valhall ocean-bottom
cable data: Geophysical Journal International, 195, 1970–1988.

Shin, C., and Y. H. Cha, 2008, Waveform inversion in the Laplace domain: Geophys-
ical Journal International, 173, 922–931.

——–, 2009, Waveform inversion in the Laplace-Fourier domain: Geophysical Journal
International, 177, 1067–1079.

Shin, J., W. Ha, H. Jun, D.-J. Min, and C. Shin, 2014, 3D laplace-domain full wave-
form inversion using a single GPU card: Computers & Geosciences, 67, 1–13.

Symes, W. W., 2008, Migration velocity analysis and waveform inversion: Geophysical
Prospecting, 56, 765–790.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic approximation:
Geophysics, 49, 1259–1266.

——–, 1986, A strategy for nonlinear elastic inversion of seismic reflection data: Geo-
physics, 51, 1893–1903.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in exploration
geophysics: Geophysics, 74, WCC1–WCC26.

Wang, B., J. Gao, H. Zhang, W. Zhao, et al., 2011, CUDA-based acceleration of full
waveform inversion on GPU: Presented at the 2011 SEG Annual Meeting, Society
of Exploration Geophysicists.

Yang, P., J. Gao, and B. Wang, 2014, RTM using effective boundary saving: A
staggered grid GPU implementation: Computers & Geosciences, 68, 64 – 72.

