next up previous [pdf]

Next: Absorbing boundary condition (ABC) Up: Forward modeling Previous: Taylor and Páde expansion

Approximate the wave equation

The innovative work was done by John Claerbout, and is well-known as $ 15^{\circ}$ wave equation to separate the up-going and down-going waves (Claerbout, 1971,1986).

Eliminating the source term, the Fourier transform of the scalar wave equation (Eq. (5)) can be specified as:

$\displaystyle \frac{\omega^2}{v^2}=k_x^2+k_z^2.$ (17)

The down-going wave equation in Fourier domain is

$\displaystyle k_z=\sqrt{\frac{\omega^2}{v^2}-k_x^2}=\frac{\omega}{v}\sqrt{1-\frac{v^2k_x^2}{\omega^2}}.$ (18)

Using the different order Pade expansions, we have:

\begin{equation*}\left\{ \begin{split}\mathrm{1st-order:} &k_z=\frac{\omega}{v}\...
...omega^2}+\frac{v^4k_x^4}{16\omega^4}}\right)\\ \end{split}\right.\end{equation*} (19)

The corresponding time domain equations are:

\begin{equation*}\left\{ \begin{split}&\mathrm{1st-order:} \frac{\partial^2 p}{\...
...frac{\partial^5 p}{\partial t\partial x^4}=0\\ \end{split}\right.\end{equation*} (20)


next up previous [pdf]

Next: Absorbing boundary condition (ABC) Up: Forward modeling Previous: Taylor and Páde expansion

2021-08-31