sfmpignfwi (2.0-git)
Acoustic FWI using Gauss-Newton optimization

        sfmpignfwi Fvel=Fv.rsf Fwavelet=Fw.rsf output=Fdat.rsf output=Finv.rsf Ferr=Ferr.rsf Fmod=Fmod.rsf Fgrad=Fgrad.rsf function=2 verb=n nb=100 coef=0.002 acqui_type=1 ns= ds= s0= sz=3 nr=acpar->nx dr=acpar->dx r0=acpar->x0 rz=3 fhi=0.5/acpar->dt flo=0. frectx=2 frectz=2 onlygrad=n wt1=acpar->t0 wt2=acpar->t0+(acpar->nt-1)*acpar->dt woff1=acpar->r0 woff2=acpar->r0+(acpar->nr-1)*acpar->dr gain=1 waterz=51 grectx=3 grectz=3 drectx=1 drectz=1 nrepeat=1 tangent=0 sigma1=-1 sigma2=-1 v1=0. v2=10. lniter=10 niter= conv_error= nls=20 factor=10 repeat=5 err_type=0

file Ferr=
auxiliary output file name
file Fgrad=
auxiliary output file name
file Fmod=
auxiliary output file name
file Fvel=
auxiliary input file name
file Fwavelet=
auxiliary input file name
int acqui_type=1
if 1, fixed acquisition; if 2, marine acquisition; if 3, symmetric acquisition
float coef=0.002
absorbing boundary coefficient
float conv_error=
final convergence error
float dr=acpar->dx
receiver interval
int drectx=1
smoothing kernel radius in x
int drectz=1
smoothing kernel radius in z
float ds=
shot interval
int err_type=0
if 0, true misfit function; if 1, both smoothing kernel and original L2 norm misfits
float factor=10
step length increase factor
float fhi=0.5/acpar->dt
high frequency in band, default is Nyquist
float flo=0.
low frequency in band, default is zero
int frectx=2
source smoothing in x
int frectz=2
source smoothing in z
int function=2
if 1, forward modeling; if 2, FWI
float gain=1
vertical gain power of data residual
int grectx=3
gradient smoothing radius in x
int grectz=3
gradient smoothing radius in z
int lniter=10
CG iteration number
int nb=100
boundary width
int niter=
iteration number
int nls=20
line search number
int nr=acpar->nx
number of receiver
int nrepeat=1
smoothing kernel repeat number
int ns=
shot number
bool onlygrad=n [y/n]
only calculate gradident or not
file output=
auxiliary output file name
float r0=acpar->x0
receiver origin
int repeat=5
after how many iterations the step length goes back to 1
int rz=3
receiver depth
float s0=
shot origin
float sigma1=-1
smoothing kernel radius moving step in z
float sigma2=-1
smoothing kernel radius moving step in x
int sz=3
source depth
int tangent=0
if 1, calculate prediction corrector
float v1=0.
lower limit of estimated velocity
float v2=10.
upper limit of estimated velocity
bool verb=n [y/n]
verbosity flag
int waterz=51
water layer depth
float woff1=acpar->r0
window data residual: rmin
float woff2=acpar->r0+(acpar->nr-1)*acpar->dr
window data residual: rmax
float wt1=acpar->t0
window data residual: tmin
float wt2=acpar->t0+(acpar->nt-1)*acpar->dt
window data residual: tmax