BASIC MADAGASCAR PROCESSING FLOWS

JEFFREY SHRAGGE

1. SConstruct BASICS

You are beginning with a basic SConstruct file:

from rsf.proj import x
% Workflow goes in here

End()

Your task will be to create a processing flow by entering various Madagascar Flow, Plot
and Result commands between the start and end lines in your SConstruct file. Note that
text in bold (e.g. scons test.rsf) are commands that should be executed on the command
line in a terminal window.

1.1. Creating basic RSF file. The first thing we are going to do is to generate a basic

RSF file using a Flow command. Recall that this has the following structure:
Flow(’target’, 'source’, 'command’) .

where the sources and used as input to the command to generate the target. Open up the

SConstruct file with your favourite text editor and enter the following command after
the first line:

Flow('spike’,None,
'spike nl=200 n2=200 01=0 02=0 d1=0.005 d2=0.005 labell=Depth unitl=km label2=Time unit2=s’)

Here we useNone to say that no input files were needed to create the target. Save your
edits it in your text editor (but leave it open for further editing). 1In a terminal
window, use scons to build the target spike.rsf by entering scons spike.rsf. If you
entered it correctly, you should have seen something like:

/Users/jeffreyshragge/Software/RSF1.5/RSFSRC/bin/sfspike n1=200 n2=200 0l1=0 02=0 d1=0.5
d2=0.5 labell=Z unitl=km label2=X unit2=km > spike.rsf

You may have noticed that scons called sfspike not spike. The extra sf has been prepended
automatically. You could have hard coded the directory path into the command; however,
you would have to write out the full program name (i.e. sfspike) and this would make

your work hard to reproduce on another computer!

Date: August 10, 2013.

2 JEFFREY SHRAGGE

Flow('spike2’,None,
"/Users/jeffreyshragge/Software/RSF1.3/RSFSRC/bin/sfspike n1=200 n2=200 0l1=0 02=0 d1=0.005 d2

You could also call non-Madagascar programs (e.g. scripts). You can check to see whether
the file dimensions are correct by entering sfin spike.rsf. You can also type see some
of the attributes by entering sfattr < spike.rsf.

Do the following:

(1) Write a Flow command that writes something to the terminal (e.g. wusing echo)

1.2. First piping. You notice that you have entered the incorrect dl and d2 numbers above.
Let’s correct this goof by using the sfput command. Note: you can get information about
any particular RSF program by simply entering its name - e.g. type sfput. Insert the
following Flow command into your SConstruct file:

Flow('newspike’, 'spike’, 'put d1=0.005 d2=0.005")

Enter scons newspike.rsf and then check that the new dl and d2 variables have been updated
by sfin newspike.rsf. Note that we could have also written this command as a combination
of two separate commands that are linked by a "pipe". Put the following command into

your SConstruct file.

Flow('newspike2’, 'spike’, 'put d1=0.005 | put d2=0.005")

In this case the Unix pipe takes the standard output (stdout) of the first command and
uses it as standard input (stdin) to the second command. A great advantage of using
pipes is that data processing commands can be strung together in a single Flow command!
Compare the two implementations by entering sfin newspike.rsf newspike2.rsf

1.3. Using Strings. You notice that you have put the wrong units into your spikes! Let’s
fix this up by changing the label using the following command:

xlabel="Depth’
Flow('newspike3’, 'newspike2’, 'put labell='+xlabel)

In this case, the +xlabel is not arithmetic addition; rather, it is a (Python) concatenation
of two strings. Running scons newspike3.rsf should generate a message like

< newspike2.rsf /Users/jeffreyshragge/Software/RSF1.3/RSFSRC/bin/sfput labell=Depth
> newspike3.rsf

1.4. Making a constant velocity model. We are now going to take newspike3.rsf and make

a 2D velocity model. Let’'s start with a constant v =2 km/s background. To do this

we are going to use sfmath which is a very useful command to know. Insert the following
into your SConstruct file:

BASIC MADAGASCAR PROCESSING FLOWS 3

Flow('VO', "newspike3’, 'math output="2" ")

Run scons VO.rsf and look at the attributes using sfattr < VO.rsf. You’ll notice that

the min/max values are all equal to 2. This command took the input file, set every element
equal to 2, and then wrote out a file with the same dimensions as the input file. The
sfspike command is very useful for making dummy files of certain size.

1.5. V(z) Velocity. We are now going to make the velocity model a little bit more interesting
by adding a v = v(z) velocity gradient. We can do this by revisiting the command we
just did. Enter the following into your SConstruct:

Flow('VZ','V0’, 'math output="input+0.5xx1" ')

This sfmath call will take the input file and add 0.5 times the x1 axis (i.e. z) that
ranges from 0 to 0.995. Execute this command with scons VZ.rsf. You will often want
to use variables in your SConstruct file (e.g., the velocity gradient above), and then
substitute its value into a Madagascar command. Here's an example you can try:

vz=0.5
Flow('VZ2','V0’, 'math output="input+%g*x1" '%vz)

Here, we define a (float) variable vz and then use it in a Flow command, substituting
it in place of %g. Note that %g indicates that it is a float; you might also want to
use %d for an integer and %s for a string.

1.6. Plotting. We haven’t yet generated any graphical output. Let’'s take a look at the
v =wv(z) velocity model we just generated. Enter the following:

Plot('VZ’','VZ', 'grey color=j mean=y scalebar=y pclip=100 title="V(z)" ')

and then run scons VZ.vpl; sfpen VZ.vpl. We have called a new Madagascar command: Plot.
This will create a .vpl (vector plot) file that can be viewed with the sfpen or xtpen
programs. We have also passed a number of different variables to the sfgrey program.

To see a listing of those you can type sfgrey. There are a number of other standard
graphics plots in sfdoc stdplot.

1.7. Independent Tasks. Do the following:

(1) Write SConstruct commands to include both v, and v, gradients, and the plot the
result using Plot into a file called VXZ.vpl.
(2) Change the colour maps of your plots to be shades of red, white and blue.

1.8. Combining Figures. You can combine more than one plot into a single graphics file.
Here are three common usages:

4 JEFFREY SHRAGGE

Result(’VEL','VZ VXZ', 'Movie')
Result(’'VEL2','VZ VXZ','SideBySideAniso’)
Result('VEL2','VZ VXZ','OverUnderAniso’)

You can look at them by entering scons VEL.view , scons VEL2.view and scons VEL3.view.
Here I have used the Madagascar Result command, which has built the .vpl files and put
them into the ./Fig/ directory. Note that you could also view them together with sfpen
Fig/VEL*.vpl. Use the s and f keys to make the movie frames go by slower or faster,
respectively.

1.9. Gaussian Perturbation. Do the following:

(1) Use sfmath to generate a RSF file called Gauss.rsf that is a Gaussian velocity
perturbation in the centre of the model. HINT: A Gaussian can be formed by:

(1) oz, z) = Agexp ((z = 20" _ (Z—Zo)2>

2 2
Oy 0%

where Ay is an amplitude, zy and z; are fixed coordinates, and o, and o, are standard
deviations.

1.10. Multiple inputs. We'd like to make a composite velocity model using the VZ.rsf
and Gauss.rsf files. This can easily be accomplished with the sfadd command.

Flow('GaussVz','Vz Gauss’, "add ${SOURCES[1]}’)

You’'ll notice that there are two input SOURCES to generate a single TARGETS. The different
files can be called using (Python) indexing of the SOURCES. Thus, ${SOURCES[0]} refers

to file Vz.rsf and ${SOURCES[1]} refers to file Gauss.rsf. Another way you could have
done this is with the following sfmath command, e.g.,

Flow('GaussVz2',['Vz’, 'Gauss’], 'math gauss=${SOURCES[1]} output="input+gauss" ')

I have used square brackets in the SOURCES area, which is another way to write it in
Python. Often there are multiple ways in Madagascar to generate the same result!

You might also run into a situation where you need multiple inputs and multiple outputs.
These can be done by passing extra tags (below otherin and otherout) and assigning them
${SOURCES[1]} and ${TARGETS[1]}

Flow('outl out2,’inl in2', 'command otherin=${SOURCES[1]} otherout=${TARGETS[1]}")

1.11. Independent Tasks. Do the following:

(1) Generate a figure of the file GaussVz.rsf with appropriate tile and correct aspect
ratio (HINT: screenratio) using a Result command.

(2) Use the sfwindow and sfcat commands to taking the left half of the GaussVz.rsf
velocity model and swap it to the right side of the velocity model.

BASIC MADAGASCAR PROCESSING FLOWS 5

1.12. Looking ahead. One thing about the above exercises is that we have hard-coded a
lot of variable values into out SConstruct file. One way to deal with this is to use
parameter dictionaries that can be defined in one place and then substituted into the
various Flow, Plot and Result commands. For example, we could have defined a dictionary
called par at the start of the SConstruct and then written the first Flow command as:

par = {

'nl’:200,'n2':200,
'ox':0.,'0z":0.,
'dx':0.5,'dz"':0.5,

'11':'Depth’,
"12':'Time',
"ul':"km',
qul:lsl’

}

Flow('spike’,None,
spike nl=%(nz)d n2=%(nx)d 0l=%(0z)g 02=%(o0x)g d1=%(dz)g d2=%(dx)g
labell=%(11)s label2=%(12)s unitl=%(ul)s unit2=%(u2)s
"’ "%par)

Here, all of the parameter values are now passed at the end of the Flow command with
the inclusion of %par. This is a great way to make sure you keep a consistent set of
values throughout your SConstruct file! Note also the triple quotes are just another
way you can write the various commands. You can write free-form within this region.

Do the following:

(1) Check your reproducibility of your work. Enter scons -c to clean, then rebuild
all your work with scons and look at figures with scons view

(2) Backup your SConstruct under a different name, and then rewrite your SConstruct
file placing all of the variables you used into a parameter dictionary.

6 JEFFREY SHRAGGE

from rsf.proj import x
. . Generate a 2D matrix
Flow('spike’,None,
"spike nl1=200 n2=200 01=0 02=0 d1=0.5 d2=0.5 labell=Depth unitl=km label2=Time unit2=s')

. . Correct the axis sampling
Flow('newspike’, 'spike’, 'put d1=0.005 d2=0.005")

. . Correct the axis sampling (again)
Flow('newspike2’, 'spike’, 'put d1=0.005 | put d2=0.005")

. . Example of using string concatenation
xlabel="Depth’
Flow('newspike3’, 'newspike2’, 'put labell='+xlabel)

. . Generate velocity model
Flow('VO', "'newspike3’, 'math output="2" ")

. . Create V of Z
Flow('VZ','V0’, 'math output="input+0.5xx1" ")

. . Again substituting a float number
vz=0.5
Flow('VZ2','VO’, 'math output="input+%g*x1l" ’'%vz)

. . Plot result
Plot('VZ’','VZ', 'grey color=j mean=y scalebar=y pclip=100 title="V(z)" ')

. . Horizontal gradients too!
Flow('VXZ',’'VO', 'math output="input+0.5%x1+0.5%*x2" ")

. . Plot of both gradients
Plot('VXZ','VXZ', 'grey color=j mean=y scalebar=y pclip=100 title="V(x,z)" ')

. . Example of different plots
Result('VEL’,'VZ VXZ', '"Movie')
Result(’VEL2','VZ VXZ','SideBySideAniso’)
Result(’VEL3’,'VZ VXZ','OverUnderAniso’)

. . Make Gaussian perturbation
Flow('Gauss’,'VZ', 'math output="exp(-49%(x1-0.5)"2-25%(x2-0.5)"2)" ")

. . Add two files together and plot
Flow('GaussVz’,'Vz Gauss’,'add ${SOURCES[1]}"')
Result(’GaussVz', 'grey color=j mean=y pclip=100 scalebar=y’)

. . A different way to do it

Flow('GaussVz2','Vz Gauss’, 'math gauss=${SOURCES[1]} output="input+gauss" ')
Result(’GaussVz2',’'grey color=j mean=y pclip=100 scalebar=y’)

End()

