
Developing your own
programs in Madagascar

Jeffrey Shragge

Centre for Petroleum Geoscience and CO2 Sequestration
University of Western Australia

August 15, 2013

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 1 / 17

Writing / adding your own codes

Isn’t there a lot there already?!?

There are > 1200 programs
already in Madagascar
Includes both seismic and
non-seismic tools
Incorporates generic data
manipulation tools

Yes! But not everything!

Some tasks not easily doable
with existing tools
Some tools might not exist at
all (i.e. your research!)
Include some existing tools
with your programs

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 2 / 17

Where to begin?

Should you build programs for
all of your needs?

NO! Examples of “Wheel” programs
Matrix multiply
Dataset concatenation
FFTs,
Bandpass filtering
...

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 3 / 17

Standing on the shoulders of giants ...

Make sure to check out ...

sfdoc -k .

Where to begin ...

Focus your time / energy on doing YOUR new research!
Do not waste time reinventing things
Look at existing Madagascar programs for help

$RSFROOT/RSFSRC/book/Recipes
$RSFROOT/RSFSRC/user/
User / Developer mailing lists

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 4 / 17

Presentation Goals

What is the main goal of this tutorial?

After this presentation you should know how to put your
own programs into Madagascar

How are we going to do it?
1 Finish coding a “Vector Addition” program
2 Compile and Install it in RSF
3 Test it with various SConstruct Flow() and Plot() rules

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 5 / 17

Agenda

This talk will focus on:

1 When should I start adding my own codes?
2 Madagascar’s API
3 RSF program structure
4 Assignment 1: Vector Addition

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 6 / 17

Agenda

This talk will focus on:

1 When should I start adding my own codes?
2 Madagascar’s API
3 RSF program structure
4 Assignment 1: Vector Addition

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 7 / 17

Where to draw the line with development

Program architecture goals

RSF programs are task-centric:
Each program performs one task or a common task set:

Spray (Forward operator)
Stack (Adjoint operator)

Programs constructed to run in a pipeline with input from
standard in and output to standard out:

< in.rsf sf my program > out.rsf
< in.rsf | sfwindow | sf my program | sfwindow > out.rsf

Pass parameters from:
Command line or SConstruct file (in rule or in dictionary)

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 8 / 17

Where to draw the line with development

Rafael wants to apply his newest filter in the frequency domain: L(ω).
However, his RSF data is in the time domain d(t). How should Rafael design
his new RSF program to obtain filtered data dfilt(t)?

Use a solution that involves FFT pair F(t → ω) and F−1(ω → t):

dfilt = F−1LFd (1)

Let us explore three solutions:

1 Write new code that applies F, then L, and then F−1.
2 Write new code that applies L, but calls an existing library for F and F−1.
3 Write an L filter program. Use Madagascar to apply F and F−1.

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 9 / 17

Thinking about program design

Three possible solutions
1 Rafael writes code that applies

F, then L, and then F−1.

2 Rafael writes a new code that
applies L, and calls existing
libraries for F and F−1

3 Rafael writes an L filter
program, and uses Madagascar
to apply F and F−1

Pros and Cons
1 Not task-centric and Rafael

wastes time researching /
writing / debugging a FFT code.

2 Not task-centric but Rafael uses
existing libraries to shorten
development time.

3 Task-centric coding that can be
used in a pipeline, and be
applied to any frequency
domain data set.

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 10 / 17

Agenda

This talk will focus on:

1 When should I start adding my own codes?
2 Madagascar’s API
3 RSF program structure
4 Assignment 1: Vector Addition (25 mins)

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 11 / 17

RSF framework

Application Programming Interface (API)
A set of rules that software programs
follow to communicate with each other

Specifies routines, data structures and the
protocols for communicating between the
consumer program and the implementer
program of the API

Madagascar has APIs for a number of
computer languages:

C/C++
Python
f77, f90
Matlab, Octave
Java

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 12 / 17

Overview of the C API

Strength of Madagascar API (here C):
Interoperable:

Common RSF file structure
Defines standard for data exchange
Enables pipelining with other programs

Improves development efficiency
Access RSF C functions / libraries
Encapsulate many tasks (e.g.
predefined data I/O subroutines)

Enhances usability
Common program documentation style
Helps other people use your code
Helps you use other people’s code

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 13 / 17

Agenda

This talk will focus on:

1 When should I start adding my own codes?
2 Madagascar’s API
3 RSF program structure
4 Assignment 1: Vector Addition (25 mins)

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 14 / 17

RSF Clipit Example (F90)
Geophysical task: Clip 1D data set where greater than user defined value.

!! STEP 1 − Documentation
program Clipit

!! STEP 2 − Import RSF API
use rsf

implicit none
type (file) :: in , out
integer :: n1, n2, i1 , i2
real :: clip
real , dimension(:), allocatable :: trace

!! STEP 3 − Init RSF command line parser
call sf init ()

!! STEP 4 − Read command line variables
call from par(” clip ” , clip)

!! STEP 5 − Declare input / output RSF files
in = rsf input () ; out = rsf output ()

!! STEP 6 − Read input data headers

call from par(in, ”n1”,n1)

!! STEP 7 − Write output data headers
call to par(out, ”n1”,n1)

n2 = filesize (in ,1)
allocate (trace (n1))

!! STEP 8 − Read in input data set
call rsf read(in , trace)
do i2=1, n2 ! loop over traces

!! STEP 9 − Do ‘‘geophysics’’
where (trace (:, i2) > clip) trace (:, i2) =

clip
where (trace (:, i2) < −clip) trace (:, i2) =

−clip

!! STEP 10 − Write output data sets
call rsf write (out,trace)

end do
end program Clipit

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 15 / 17

Generic RSF program

1 Documentation (comments)
2 Import RSF API
3 Initialize RSF command line parser
4 Read command line variables
5 Declare all input / output RSF files
6 Read input data headers
7 Create output data headers
8 Read input data sets
9 (Do geophysics)...

10 Write output data

!! STEP 1
! Clipit - Program to clip a traces
!! STEP 2
use rsf
!! STEP 3
call sf init()
!! STEP 4
call from par(”clip”,clip)
!! STEP 5
in = rsf input();
out = rsf output()
!! STEP 6
call from par(in,”n1”,n1)
!! STEP 7
call to par(out,”n1”,n1)
!! STEP 8
call rsf read(in,trace) !! STEP 9
where (trace > clip) trace = clip
!! STEP 10
call rsf write(out,trace)

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 16 / 17

Agenda

This talk will focus on:

1 When should I start adding my own codes?
2 Madagascar’s API
3 RSF program structure
4 Assignment 1: Vector Addition

Jeffrey Shragge (CPGCO2, UWA) RSF School August 15, 2013 17 / 17

	Part I - Introduction

