kil

MADAGASCAR

Madagascar
Principles

Sergey Fomel

45 Years of Unix

BSD family

BSD (Berkeley Software Distribution) 4.4
Bill Joy

—™ SunOS 4.1.4

* NextStep 3.3

Mac OS X
Xenix OS Apple
MicrosoftySCO

GNU/Hurd K16 >

GNU
Richard Stallman GNU/Linux

’(Mlnlx: Linus Torvalds
Andrew S. Tanenbaum

Research UNIX 10.5

Bell Labs: Ken Thompson,] ;
Dennis Ritchie, et al Commerclal UNIX UnixWare

ATET | Univel/SCO
Solaris 11 11/11

Sun Microsystems

System Ill & V family 11i v3

7.1TL1

Unix Philosophy

>

“Write programs that do one Ve
thing and do it well. Write Th@ AI'L Of s

programs to work together. UNL\ s
Write programs to handle PI‘OgI‘ammjng

text streams, because that is
a universal interface.” Eri¢ S. Raymond

L
Doug Mcllroy ¢

>
)
o
w
@]
£
=
m
wn
-
m
<
-
=
@)
s
m
wn
2]
(@]
Z
>
=
O
@]
<L
el
C
=
Z
0O
wn
m
=
E
wv

Outline

* The tao of Unix
* Madagascar history and status

* Unix-style abstraction in Madagascar

Ir\,\\{f'll Madagascar Facts

3

In a Nutshell, Madagascar...

...has had 12,445 commits made by 85 contributors
Representing 1,098,245 lines of code

...is mostly written in C

with an average number of source code comments
...has a well established, mature codebase
maintained by a large development team

with stableY-O-Y commits

...took an estimated 302 years of effort
starting with its first commit in May, 2003

Madagascar Contribut

United
Canada Kingdom
G ny Ukraine Kazakhetan
France ,u‘cngc a
Italy
\ Spain y
United Siates NAarth Turkey
North)
Atlantic Afghanistan
Nraeh 397 ran
vcean pakista
Algeria leya Eg’ypl akistan
Mexico di Arabia India
’ Thailand
Mali | Niger sSudan
Chad
enezuela Nigeria Ethiopia
Colombia
‘ Kenya
DR Congo y ind
- ndonesia Papua New
Brazi Tanzania Guinea
Peru Angola
Bolivia b
Namibia v Firy
‘ S Madagascar rndian
th = South R Ucean Australia
Chile = =
{'L'.' Atiantic
‘N Ocean South Africa

Argentna

Madagascar Schools

Finland
lceland Sweden
Russia
Norway
United
Canada Kingdo
Poland
Geymany Ukraine Kazakhstan
France Mongolia
Italy
h Spain ¥
Unifed s o Turkey Japan
China uth Korea
Afghanistan
Iraq Iran
Algeria Libya Egypt Pakistan
Mexico Saudi Arabia India
Thailand
Mali Niger Sudan
Chad
venezuela Nigeria Ethiopia
Colombia
Kenya
DR Congo 4 ind
~ ndonesia Papua New
Soni Tanzania Guinea
Peru Angola
Bolivia bi
Namibia | N C
4 Madagascar A
uth South Botswana O Australia
Chile =iy e #
>ITIC Atiantic
ean Ocean South Africa
Argentina N

«

Zea

Research Pyramid

MpIEment

Research Pyramid

WOrKHOWS

A OYIdiilS

Research Pyramid

,)39
C J.)df:)
QQQ WOIKIIOWS

/000 FIgUIEs

2700084 0JIaiilS

Outline

* The tao of Unix
* Madagascar history and status

* Unix-style abstraction in Madagascar

sfdottest/sfconjgrad

mathematics geophysics

| |

» sfconjgrad sfmodeling velocity=vel.rsf\

niter=100 xo=mo.rsf < data.rsf > model.rsf

» sfdottest sfmodeling velocity=vel.rsf\

mod=model.rsf dat=data.rsf

sfdottest: L[m]*d=1165.87

sfdottest: L'[d]*m=1165.87

sfdottest: fork/exec

sfomp/sfmpi

» sfomp sfmodeling split=1 join=2\

velocity=vel.rsf < shots.rsf > data.rsf

* mpirun —np 100 sfmpi sfmodeling\

sfomp/sfmpi

sfbatch/pscons

* sfbatch: submit a job to a shared cluster

sfbatch exe='scons NP=100 data.rsf’

scons BATCH=1 data.rsf

* pscons: parallel scons (wrapper for scons —j)
Flow(‘data’,'shots’,’'modeling’,split=[3,’'omp’])

Flow('data’,’shots’,'modeling’,split=[3,’mpi’])

Flow('data’,’shots’,'modeling’,split=[3,1000])

What Does This Command Do?

» sfbatch exe='sfconjgrad mpirun -np 1000

sfmpi sfomp@odelin 6niter=1oo

vel=velocity.rsf split=3 ioin=1

Python Interface

def conjgrad(oper,dat,x0,niter):
'Conjugate-gradient algorithm for minimizing |A x - dat|"2'
x = x0
R = oper(adj=0)[x]-dat
for iter in range(niter):
g = oper(adj=1)[R]
G = oper(adj=0)[g]
gn = g.dot(g)
print "iter %d: %g" % (iter+l,gn)
if O==iter:

s =g
S =G
else:

beta = gn/gnp
s = g+s*beta
= G+S*beta
gnp gn
alpha = -gn/S.dot(S)
X = x+s*alpha
R = R+S*alpha
return x

N w0

Outline

 The tao of Unix

* Madagascar history and status

* Unix-style abstraction in Madagascar

Claerbout’s Principle

“An article about computational
science in a scientific publication is
not the scholarship itself, it is
merely advertising of the
scholarship. The actual scholarship
is the complete software
development environment and
the complete set of instructions
which generated the figures.”

(Buckheit and Donoho, 1995)

Reproducible Research

"It is a big chore for one researcher to reproduce the
analysis and computational results of another [...] |
discovered that this problem has a simple technological
solution: illustrations (figures) in a technical document are
made by programs and command scripts that along with
required data should be linked to the document itself
[...]1This is hardly any extra work for the author, but it
makes the document much more valuable to readers who
possess the document in electronic form because they are
able to track down the computations that lead to the
illustrations.” (Claerbout, 1991)

Reproducible Research in PDF

Text Editor = B) 10:15AM %

< [SWNN 204.16% V

Thumbnails AR 4

>
<

Q€ SConstruct.T8ZCOX (/tmp/evince-23709) - gedit
Delllnger 69, MUZT' 3 File Edit View Search Tools Documents Help

'

n pOpen v Esave .;. €\ Undo
SConstruct.T8ZCOX X \
from rsf.proj import *

=0 Plot('notate3', 'notate3.txt', 'plas -i')
~-0:Q

jMYE O e

3

< , .
(aYoNo! ’ \

- ' \
N | Kolele
o - s
/ \
| \ * c44=54
‘ * I Python v Tab width: 8 ~ Ln5, Col13 INS
\ /
/
=B @ \
\ /
\ Vi
DG N\ 7/
\5—’

OO Figure 2: Three different approximations (dashed curves) to the gSV impulse-response
5 surface of Greenhorn Shale (bold curves). On the left is the standard vertical paraxial
elliptic approximation. In the center is the horizontal paraxial elliptic approximation. On

the right is Muir’s double-elliptic approximation.

vels/ verthoriz ‘

terate Programming

A, :

Lo 8

N - (r
L)

Literate Programming

"The basic idea of literate programming is to take a
fundamentally different starting point for the presentation
of programs to human readers, without any direct effect
on the program as seen by the computer. Rather than to
present the program in the form in which it will be
compiled (or executed), and to intercalate comments to
help humans understand what is going on (and which the
compiler will kindly ignore), the presentation focuses on
explaining to humans the design and construction of the
program, while pieces of actual program code are
inserted to make the description precise and to tell the
computer what it should do.” (van Leeuwen, 1990)

Literate Programming In

IPython/Jupyter Notebooks

5] localhost 2 t o [NON | £l localhost ' t]
Home Home Swan +
Jupyter swan uoseves) A jupyter swan @uoseveq) A
File Edit View nsert Ce Kemel He'p Python 2 File Edit View nsert Ce Keme Help 2
B+ % @B 4+ v » B C Markdown % Cel Toobar: | None H B+ 3 @ 0B 4 4 » B C Makdown 4 Cel Toobar: | None H

The least-squares fit is N .
Slope estimation 9|

In [51]: Vtfile slope.scons

In [52]:

out[52]:

Flow{'num',
Flow('d
Plow('vel','n

stack norm=n')

Offset (m)

grt(1800*1800*input+1)" ')

200 400 600 800 1000 1200

Estimated

Velocity

Overwriting lsfit.scons

-0.5

view('vel

In [38]:

)

Out[3g):

Estimated Velocity

MADAGASCAR

www.ahay.org

