next up previous [pdf]

Next: INTRODUCTION TO DIP Up: PRESTACK MIGRATION Previous: Prestack migration ellipse

Constant offset migration

Considering $h$ in equation (8.6) to be a constant, enables us to write a subroutine for migrating constant-offset sections. Forward and backward responses to impulses are found in Figures 8.4 and 8.5.

Cos1
Figure 4.
Migrating impulses on a constant-offset section. Notice that shallow impulses (shallow compared to $h$) appear ellipsoidal while deep ones appear circular.
Cos1
[pdf] [png] [scons]

Cos0
Figure 5.
Forward modeling from an earth impulse.
Cos0
[pdf] [png] [scons]

It is not easy to show that equation (8.5) can be cast in the standard mathematical form of an ellipse, namely, a stretched circle. But the result is a simple one, and an important one for later analysis. Feel free to skip forward over the following verification of this ancient wisdom. To help reduce algebraic verbosity, define a new $y$ equal to the old one shifted by $y_0$. Also make the definitions

$\displaystyle t v     $ $\textstyle =$ $\displaystyle     2 A$ (7)
$\displaystyle \
\alpha    $ $\textstyle =$ $\displaystyle     z^2   +  (y + h)^2$  
$\displaystyle \beta    $ $\textstyle =$ $\displaystyle     z^2   +  (y - h)^2$  
$\displaystyle \alpha  -  \beta    $ $\textstyle =$ $\displaystyle     4 y h$  

With these definitions, (8.5) becomes

\begin{displaymath}
2 A \eq  \sqrt \alpha   +  \sqrt \beta
\end{displaymath}

Square to get a new equation with only one square root.

\begin{displaymath}
4 A^2   -  (\alpha + \beta)  \eq  2 \sqrt{ \alpha \beta }
\end{displaymath}

Square again to eliminate the square root.

\begin{eqnarray*}
16 A^4   -  8 A^2   (\alpha + \beta)   +  (\alpha...
...a + \beta)   +  (\alpha - \beta)^2     &=&
    0
\end{eqnarray*}

Introduce definitions of $\alpha$ and $\beta$.

\begin{displaymath}
16 A^4   -  8 A^2  [ 2 z^2  + 2 y^2  + 2 h^2 ]   + \
16 y^2   h^2  \eq  0
\end{displaymath}

Bring $y$ and $z$ to the right.
$\displaystyle A^4   -  A^2   h^2     $ $\textstyle =$ $\displaystyle    \
A^2   ( z^2  + y^2 )   -  y^2   h^2$  
$\displaystyle A^2   ( A^2  - h^2 )     $ $\textstyle =$ $\displaystyle    \
A^2   z^2  + ( A^2  - h^2 )   y^2$  
$\displaystyle A^2     $ $\textstyle =$ $\displaystyle     {z^2 \over 1  - {h^2 \over A^2}}  +  y^2$ (8)

Finally, recalling all earlier definitions and replacing $y$ by $y-y_0$, we obtain the canonical form of an ellipse with semi-major axis $A$ and semi-minor axis $B$:
\begin{displaymath}
{(y - y_0)^2 \over A^2}  + {z^2 \over B^2} \eq 1    ,
\end{displaymath} (9)

where
$\displaystyle A$ $\textstyle \eq$ $\displaystyle {v t \over 2}$ (10)
$\displaystyle B$ $\textstyle \eq$ $\displaystyle \sqrt{A^2 - h^2}$ (11)

Fixing $t$, equation (8.9) is the equation for a circle with a stretched $z$-axis. The above algebra confirms that the ``string and tack'' definition of an ellipse matches the ``stretched circle'' definition. An ellipse in earth model space corresponds to an impulse on a constant-offset section.


next up previous [pdf]

Next: INTRODUCTION TO DIP Up: PRESTACK MIGRATION Previous: Prestack migration ellipse

2009-03-16