![]() |
![]() |
![]() |
![]() | Model fitting by least squares | ![]() |
![]() |
The compute time for a rectangular matrix is slightly more pessimistic.
It is the product of the number of data points
times the number of model points squared
which is also the cost of computing the matrix
from
.
Because the number of data points generally exceeds the number of model
points
by a substantial factor
(to allow averaging of noises),
it leaves us with significantly fewer than 4,000 points in model space.
A square image packed into a 4,096-point vector is a array.
The computer power for linear algebra to give us solutions that
fit in a
image is thus proportional
to
, which means that even though computer power grows rapidly,
imaging resolution using ``exact numerical methods'' hardly
grows at all from our
current practical limit.
The retina in our eyes captures an image of size roughly 1,000 1,000
which is a lot bigger than
.
Life offers us many occasions in which final images exceed the 4,000
points of a
array.
To make linear algebra (and inverse theory) relevant to such applications,
we investigate special techniques.
A numerical technique known as the
``conjugate-direction method''
works well for all values of
and is our subject here.
As with most simultaneous equation solvers,
an exact answer (assuming exact arithmetic)
is attained in a finite number of steps.
And, if
and
are too large to allow enough iterations,
the iterative methods can be interrupted at any stage,
the partial result often proving useful.
Whether or not a partial result actually is useful
is the subject of much research;
naturally, the results vary from one application to the next.
![]() |
![]() |
![]() |
![]() | Model fitting by least squares | ![]() |
![]() |