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ABSTRACT

Cycles in sedimentary strata exist at different scales and can be described by
fractal statistics. We use von Kármán’s autocorrelation function to model het-
erogeneities in sonic logs from a clastic reservoir and propose a nonlinear pa-
rameter estimation. Our method is validated using synthetic signals, and when
applied to real sonic logs, it extracts both the fractal properties of high spatial
frequencies and one dominant cycle between 2.5 and 7 m. Results demonstrate
non-Gaussian and antipersistent statistics of sedimentary layers. We derive an
analytical formula for the scattering attenuation of scalar waves by 3D isotropic
fractal heterogeneities using the mean field theory. Penetration of waves exhibits
a high-frequency cutoff sensitive to heterogeneity size. Therefore shear waves
can be more attenuated than compressional waves because of their shorter wave-
length.

INTRODUCTION

Propagation of waves in heterogeneous media involves attenuation and dispersion by
scattering. Theoreticians are still challenged by the phenomenon of wave propagation
in random media. The mean field theory (Chernov, 1960; Karal and Keller, 1964;
Uscinski, 1977) is commonly used and provides both dispersion and attenuation,
depending on scattering cross-sections of the heterogeneities (Waterman and Truell,
1961; Wu and Aki, 1985; Kanaun and Levin, 2008), which are described by their
statistical spatial autocorrelation. Higher order correlations have been more recently
incorporated in a frequency-dependent effective medium theory (Chesnokov et al.,
1998). One major advance, pointed out by Wu (1982); Wu and Aki (1985), is the
restriction of the validity of the mean field formalism to low frequency. The theory
in fact includes destructive interferences, caused by averaging different realizations of
the random medium, and overestimates attenuation at high frequencies. Alternative
solutions have been proposed to remove this artificial decoherence of the phase. Two
important examples are radiative transfer theory (Wu, 1993; Haney et al., 2005) and
the Rytov approximation (Rytov et al., 1989), which is more adequate than the Born
approximation when phase fluctuations are important.
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In the area of seismic imaging, the layered structure of sediments led O’Doherty
and Anstey (1971) to introduce the fundamental concept of stratigraphic filtering.
The empirical formula postulated by O’Doherty and Anstey was demonstrated in 1D
using mean field formalism (Banik et al., 1985; Resnick, 1990) and, alternately, using
wave localization theory (Sheng et al., 1986; Shapiro and Zien, 1993; Shapiro and
Hubral, 1999), with a recent extension to a larger frequency band for acoustic waves
in 3D (Müller and Shapiro, 2001). The wave localization method utilizes phase, and
logarithm of the amplitude, which have the property of self-averaging over some dis-
tance called the localization length, in a stationary random medium. These quantities
are exactly the ones used in the Rytov method and avoid the phenomenon of artificial
phase decoherence at high frequencies. Multiple scattering of seismic waves remains
a complex and active research area.

The fractal property of subsurface heterogeneities was initially discussed by Hewett
(1986) for hydrocarbon reservoirs and has been confirmed in both vertical and hor-
izontal wells (Stefani and Gopa, 2001). The study of seismic scattering by 2D nu-
merical wave propagation (Frankel and Clayton, 1986) demonstrates the necessity
of self-similar heterogeneities for modeling both observations of coda waves and of
traveltime anomalies. A 1/f spectrum of heterogeneities was modeled using the von
Kármán spatial autocorrelation function (von Kármán, 1948) in order to obtain a con-
stant quality factor at high frequencies. For scatterers larger than the wavelength,
multipathing was observed, whereas 3D effects were revealed to be important for scat-
tering loss at low frequency. Gist (1994) tried to explain seismic-wave attenuation in
VSP surveys by 3D scattering from fractal heterogeneities. One of the first attempts
to relate the statistics of well log data to seismic scattering used wave localization
theory (White et al., 1990). A more detailed study of acoustic-wave localization ef-
fects in 1D fractal media (van der Baan, 2001) shows that a constant quality factor
is possible only for the 1/f fractal spectrum and that localization can not occcur if
the medium contains periodic layers involving resonance and violating the ergodic-
ity assumption. Convergence of the localization effect in realistic 3D seismic surveys
seems questionable. Presence of strong cycles in well log data is causing difficulties
when the fractal exponent is being estimated (Dolan et al., 1998) and is commonly
attributed to Milankovitch cycles (Anstey and O’Doherty, 2002a).

Further investigation of the relationship between cycles, fractal properties, and
correlation lengths is necessary and low-frequency scattering theories in 3D fractal
media can be appropriate for conventional seismic surveys. In this paper, we propose
a nonlinear estimation method for fractal statistics of sonic-log heterogeneities using
von Kármán’s model. We attempt to identify different scales of the sedimentation
process as proposed by O’Doherty and Anstey (1971) and Anstey and O’Doherty
(2002a). The inversion captures small-scale heterogeneities while larger local cycles
exist. We use the mean field theory to calculate analytical solution of low-frequency
attenuation by scattering from 3D fractal heterogeneities and predict a shift of the
dominant frequency with depth in seismic surveys.

The paper is organized into two parts. In the first part we present a description
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of cycles in sediments in connection with fractal statistics. The von Kármán spatial
autocorrelation function is introduced, and we briefly review some features of fractal
statistics. We present our estimation method, validate it on synthetic signals, apply
it to our sonic-log data, and show that one can detect the high-frequency part of the
superposition of different geological scales. The second part explains the derivation
of scattering attenuation for low-frequency acoustic waves by 3D isotropic fractal het-
erogeneities using the mean field theory. Results comply with the Rayleigh regime
and the Backus effective medium for very low frequency. We present analytical pre-
dictions of scattering attenuation and show the existence of a cutoff frequency for the
penetration of waves. We use the frequency dependence of the penetration depth to
calculate the shift of the dominant frequency of a Ricker wavelet. We conclude by
suggesting further improvements.

STATISTICAL MODEL OF HETEROGENEITIES

Let us consider the spatial fluctuations of seismic velocities to be small and to consti-
tute a second-order stochastic process. We describe the fluctuations by using different
realizations of the random function f(x) with the expectation value 〈f〉 = 0 and with
the spatial covariance depending on the relative distance r defined by

〈f(x)f(x + r)〉 = σ2N(r), (1)

where σ is the standard deviation and N(r) is the spatial autocorrelation function
with N(0) = 1. The energy spectrum E(s)(k) of the fluctuations in s dimensions
(s = 1, 2, 3) is related to the autocorrelation by the Wiener-Khintchine theorem (Born
and Wolf, 1964):

E(s)(k) = |F (k)|2 = σ2
∫
N(r)e−ik·rdr, (2)

F (k) =
∫
f(x)e−ik·xdx, (3)

where k is the spatial wave vector and F (k) is the Fourier transform of f(x). The
energy spectrum in equation 2 can be simplified, for an isotropic correlation function,
to

E(1)(k) = 2 σ2
∫ ∞

0
N(r) cos(kr)dr, (4)

E(3)(k) =
4π

k
σ2
∫ ∞

0
rN(r) sin(kr)dr, (5)

where k = |k|. The von Kármán autocorrelation function NH,b(r) describes a self-
affine medium relevant for geological structures (Goff and Jordan, 1988; Holliger and
Levander, 1992; Dolan et al., 1998; Sato and Fehler, 1998; Klimes̆, 2002; Goff and Hol-
liger, 2003). This function was initially derived by von Kármán (1948) while studying
the velocity field in a turbulent fluid and has been used to describe heterogeneous
media (Tatarski, 1961; Frankel and Clayton, 1986). The Fourier transform of NH,b(r)
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was given by Lord (1954). The statistical autocorrelation NH,b(r) and the energy

spectrum E
(s)
H,b(k) in the Fourier domain are

NH,b(r) =
2(1−H)

Γ(H)
(r/b)HKH(r/b), (6)

E
(s)
H,b(k) = σ2 C

(s)
H

(2b)s

(1 + b2k2)H+ s
2
, (7)

with C
(s)
H =

∣∣∣∣∣Γ(H + s
2
)

Γ(H)

∣∣∣∣∣ π s
2 , (8)

where r = |r|, KH is the modified Bessel function of the second kind with order H, and
Γ is the Gamma function. Parameters describing the heterogeneities are characteristic
distance b, below which the distribution is fractal, and exponent H, characterizing
the roughness of the medium. We use the energy spectrum in equation 7 with s = 1
to analyze sonic logs and with s = 3 to predict 3D scattering attenuation.

Fractal statistics

Among different concepts introduced by the theory of fractals (Mandelbrot, 1983),
self-affine property accounts for invariance of roughness of a curve observed at different
scales. Self-affine fractals can be characterized by the power-law dependence of their
energy spectrum E(f) on frequency f :

E(f) ∝ f−β. (9)

The exponent β, in the energy spectrum E
(s)
H,b(k) from equation 7, is

β = 2H + s. (10)

For β = 0, energy spectrum is constant and describes the familiar white noise. Causal
integration of Gaussian white noise produces the classical Brownian motion, or ran-
dom walk, characteristic of diffusion processes, and results in an energy spectrum
with β = 2. The autocorrelation function of Brownian motion signals is a decreasing
exponential and the autocorrelation in equation 6 properly reduces to exp [−r/b] for
H = 0.5. Another interesting form of spectrum is for β = 1. The associated signal
is called Flicker noise (Schottky, 1926; Dolan et al., 1998) and can be interpreted as
the superposition of different relaxation processes. For geological layers, such form
of spectrum was interpreted as the expression of quasi-cyclicity and blocky layering
(Shtatland, 1991). Generalization, including Gaussian white noise and Brownian mo-
tion, leads to two types of fractal signals (Shtatland, 1991; Turcotte, 1997; Li, 2003),
namely

• fractional Gaussian noise (fGn) defined as filtered Gaussian white noise with
−1 ≤ β ≤ 1,
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• fractional Brownian motion (fBm) built by causal integration of fGn above and
resulting in 1 ≤ β ≤ 3.

The fGn is stationary and Gaussian, whereas the fBm is neither stationary nor Gaus-
sian. Exponent βfBm of the fBm is related to exponent βfGn of the fGn, used for
integration, by βfBm = βfGn + 2.

The significance of parameter H in equation 10 is delicate and connected to the
Hurst exponent Hu, which measures the correlation of time series (Hurst, 1951) by

Hu =
log

(
R/
√
S
)

log(T )
, (11)

where R and S are respectively range of variations and variance calculated for the
length T of the signal. The meaning of the value of Hu is

• antipersistence for 0 ≤ Hu ≤ 0.5,

• random process for Hu = 0.5, and

• persistence for 0.5 ≤ Hu ≤ 1.

Estimation of Hu using formula 11 is relevant only for fGn signals (Turcotte, 1997).
For example, Gaussian white noise produces Hu = 0.5. Parameter H defined in
equation 10 is associated with the Hurst exponent by

• H = Hu− 1 for fGn with −1 ≤ β ≤ 1;

• H equals the Hurst exponent of incremented fGn (Li, 2003) for fBm with 1 ≤
β ≤ 3.

The different self-affine 1D fractal models are presented in Table 1 according to the
nature and persistency of the signal. A previous analysis of the logarithm of acoustic
impedance from well data by Walden and Hosken (1985) shows 1/2 ≤ β ≤ 3/2, pro-
moting the so-called 1/f geology. An improved solution, reproducing the complete
well log sequence in sedimentary rocks, uses a similar random process based on frac-
tional Lévy motion (Painter and Paterson, 1994), but fBm can be adequate at small
scales, inside different facies (Lu et al., 2002).

Synthetic realizations

Our method of synthesizing correlated random media is summarized in Table 2 for
fractional Gaussian noise (fGn) and fractional Brownian motion (fBm). The Gaussian
nature of the initial white noise is contained in the phase of its Fourier transform
G(k), whereas the amplitude is constant with frequency because the noise is white.
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Fractal exponent Von Kármán exponent H Description Geology

β = 0 −0.5 Gaussian white noise Random process

0 < β < 1 −0.5 < H < 0 Persistent fGn

β = 1 0 Flicker noise Blocky layers

1 < β < 2 0 < H < 0.5 Antipersistent fBm Quasi-cyclic deposition

β = 2 0.5 Brownian walk Random deposition

2 < β < 3 0.5 < H < 1 Persistent fBm Transitional deposition

Table 1: Classification of 1D fractal statistics according to the exponent β and geo-
logical interpretation.

Steps Domain Operation for fGn Operation for fBm

1 Space Generate Gaussian white noise g(x) with zero mean and unit variance

2 Fourier Generate energy spectrum E
(s)
H,b(k)

3 Fourier F (k) =
√
E

(s)
H,b(k) G(k) F (k) = −i sign(k)

√
E

(s)
H,b(k) G(k)

4 Space Obtain correlated fGn f(x) Obtain correlated fBm f(x)

Table 2: Synthesis of correlated heterogeneous media by generating fractional Gaus-
sian noise (fGn) or fractional Brownian motion (fBm) with the spectrum E

(s)
H,b(k).

The spatial Fourier transforms in s dimensions of the distributions f(x) and g(x) are
respectively F (k) and G(k) with |G(k)| = 1, and sign(k) = k/|k|.
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(a) (b)

(c) (d)

Figure 1: Variations of VS in a high-resolution reservoir model based on seismic and
well data from a field in Canada (a) and its spectral energy density (b). Synthetic
realization of 2D fGn using the von Kármán spectral amplitude with the exponent
β = 1 and elliptical anisotropy (c, d).
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The causal integration, to produce the fBm, is performed by a phase rotation in the
Fourier domain, strictly equivalent to the Hilbert transform. The fractal property,

below spatial scale b, is imposed by the amplitude
√
E

(s)
H,b of the von Kármán model.

For dimension s = 2, the exponent in equation 7 is β = 2H + 2. Therefore, the
energy spectrum of the 2D fGn with H = −0.5 in Figure 1 is E(f) ∝ 1/f . Klimes̆
(2002) in fact proposed using −0.5 ≤ H ≤ 0 to synthesize geologically realistic 2D
models with the von Kármán function. Because sediments are made up of layers,
we consider the autocorrelation function to be vertical transverse isotropic. We use
two different correlation lengths bx and bz for horizontal and vertical directions, and
define the Riemannian relative distance (Goff and Jordan, 1988):

r/b =
√

(rx/bx)2 + (rz/bz)2. (12)

Figure 1 shows, for comparison, the signal and associated energy spectrum of the
synthetic fGn and of a 2D section from a high-resolution model of a clastic reservoir
in Canada. The spectrum of the synthetic heterogeneous medium is similar to the one
from the reservoir model, but the synthetic fGn, although exhibiting some comparable
roughness in the space domain, does not contain coherent, large geological structures,
i.e. folded beds.

Nonlinear parameter estimation on sonic well logs

We propose to use the synthesis of a random medium detailed in Table 2 for s=1 as
a basis for the procedure to estimate heterogeneity parameters from sonic logs. We
achieve optimization by using a weighted least-squares method in the spectral domain
on the logarithm of the amplitude, with the model derived from equation 7 :

ln |F (k)| = ln |F (0)| − p ln
[
1 + (kb)2

]
, (13)

p =
H

2
+

1

4
and (14)

|F (0)| = σ
√

2b C
(1)
H . (15)

We estimate the three parameters, b, H, and σ, using a separable least-squares method
(Golub and Pereira, 1973) for ln |F (0)| and the slope p, and a Gauss Newton opti-
mization algorithm on the nonlinear parameter b2. Parameter ln |F (0)| is included in
the optimization algorithm because it is difficult to estimate directly from the zero-
frequency component in the data. Standard deviation σ, extracted from relation 15,
is confirmed by direct evaluation on the spatial signal. When applying the method,
we first substract the signal expectation and use it as a scaling factor. We have tested
the efficiency of the algorithm on synthetic fGn and fBm generated by the procedure
in Table 2 with a discrete length of 4056 points. Three synthetic fractal signals and
their parameter estimations are shown in Figure 2. Results of the validation tests are
presented in Table 3.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Synthetic signals generated as fGn with H = −0.25, b = 10 m, σ = 20 % in
(a); fBm with H = 0.25, b = 5 m, σ = 30 % in (c); and fBm with H = 0.5, b = 5 m,
σ = 30 % in (e). Parameter estimations on the logarithm of the spectral amplitude
are shown on the right (b, d, f).
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Sonic log VP (a) from well N◦1 and VS (b) from well N◦3, scaled by their
respective average value V0. Parameter estimation on the logarithm of the spectral
amplitude (c, d) shows the existence of different slopes for low, medium, and high
frequencies. These tool artefacts are removed by restricting the estimation method
to low frequency (e, f).
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Parameters H b (m) σ (%)

Generated fGn -0.25 10.0 20
Recovered -0.21 11.0 18

Generated fGn -0.25 5.0 20
Recovered -0.21 5.9 17

Generated fBm 0.25 10.0 30
Recovered 0.26 10.2 23

Generated fBm 0.50 5.0 40
Recovered 0.51 5.3 32

Generated fBm 0.75 3.0 40
Recovered 0.79 2.7 30

Table 3: Comparison of the stochastic medium parameters used to generate synthetics
fGn and fBm and their recovery by the nonlinear estimation method.

Well log data come from a sandy channel reservoir with a clastic overburden, and
the facies evolves from silty sandstone to mudstone, which is characteristic of alluvial
deposition. Velocities VP and VS were both measured with a spatial sampling of
0.125 m. Figure 3 shows the parameter estimation for two sonic logs. Comparison
with the method applied to the synthetics in Figure 2 uncovers the existence of
different slopes for different frequencies in Figures 3(c) and 3(d). We can reasonably
delimit three domains, denoted (A) for low frequencies, (B) for medium frequencies,
and (C) for very high frequencies. These domains can be identified by parameters rS
and rI , representing specific values of relative distance r, namely

(A) for r ≥ rS, (B) for rS ≥ r ≥ rI , (C) for rI ≥ r,

where 1 m < rS < 2 m and rI < 1 m. The sharp break (B) in the medium frequencies
followed by a white noise (C) at high frequencies is characteristic of the tool artefact.
Data acquisition involves a convolution with a box-car window (Shiomi et al., 1997;
Dolan et al., 1998). Application of the estimation method is thus restricted to relative
distances r > rS, and results are shown in Figures 3(e) and 3(f).

Results are summarized in Table 4 for the four different sonic logs VP and VS. The
ratio 〈VP 〉/〈VS〉 is almost constant for the four well logs and roughly equal to two.
The updated estimation in the spatial wavelength domain (A) produces reasonable
results in Table 4. Standard deviation σ varies from 20 to 45 % and is larger for VS
logs than for VP logs. Correlation length b is about 5 m for both VP and VS, except
for the well N◦4, which is 2.5 m. Exponent H for VP varies from 0.1 to 0.4 and for VS
from 0.2 to 0.6. In Figure 4, comparison of the frequency content of one real sonic log
with one realization of a synthetic fBm, generated using similar parameters, shows
that the sonic-log data contain higher peaks for very large wavelengths. We detected
in the different sonic well logs the recurrence of some particular spatial cycles at 2.5 m,
5 m, 10 m, and 20 m.
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Well Log b (m) H σ (%) 〈V 〉 (m/s)

N◦1 VP full 0.79 1.32 17 2791
r > 1.5 m 6.70 0.13 22

VS full 1.05 1.16 32 1218
r > 2.0 m 5.92 0.21 35

N◦2 VP full 1.90 0.92 27 2842
r > 1.6 m 5.34 0.38 29

VS full 2.84 0.83 45 1240
r > 1.5 m 3.08 0.62 44

N◦3 VP full 1.34 1.16 20 2787
r > 1.9 m 7.22 0.18 21

VS full 1.25 1.23 32 1216
r > 1.8 m 5.01 0.32 36

N◦4 VP full 0.64 1.98 18 2745
r > 1.4 m 2.58 0.39 38

VS full 0.57 2.26 32 1247
r > 1.3 m 2.46 0.56 33

Table 4: Parameters estimation from four wells in a clastic overburden, for the full
sonic logs, and for limited spatial frequency bandwidths using the indicated restriction
on the relative distance r to remove the tool artefacts. Relevant physical values are
underlined.

(a) (b)

Figure 4: Fourier spectrum of the scaled VS sonic log from well N◦ 3 (a). The
shape of the low-frequency content is different from that of the Fourier spectrum of
the fractional Brownian motion (b) synthesized with the von Kármán model using
H = 0.25, b = 5 m, and σ = 30 %.
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Fractal heterogeneities and cycles in sediments

O’Doherty and Anstey (1971) and Anstey and O’Doherty (2002a) described variations
in well logs by the superposition of different types of deposition, leading to “layers
inside layers”. Their classification includes

1. A large number of small thickness layers (≤ 1 m) for weakly transitional depo-
sitions with small reflection coefficients;

2. Cyclic layers of thicknesses from 1 to 10 m with sharp interfaces, corresponding
to fine layering depositions inside a facies for short-period sea cycles; and

3. Horizons imaged by seismic reflection, i.e. different facies for a small number of
thicker blocky layers associated with low-order cycles.

They suggested that transmission losses could be compensated by multiple reflections,
depending on seismic wavelength. This classification is in agreement with the fact that
high exponents, H, appear for shorter scales, b, in Table 4. The estimation performed
on the sonic logs indicates fractal properties for distances shorter than b ' 5 m.
Acccording to Anstey and O’Doherty (2002a), well log signals are the superposition
of several processes with different scales. The von Kármán model captures part of it.
Parameters extracted by our analysis describe heterogeneities corresponding to type
2 of the O’Doherty-Anstey classification, which is a fractal behavior inside major
geological units, at least from 10 down to 1 m, with a correlation length of 5 m.
Previous estimations of the correlation length on well logs were produced by direct
calculation of the spatial autocorrelation (White et al., 1990; Shiomi et al., 1997).
White et al. (1990) suggested the possibility of superposition of two correlation lengths
at 5 and 20 m. The wavelet detection analysis of gamma-ray and resistivity well logs
for a sandstone confirmed the strong evidence of local cyclicity in the stratigraphic
sequences (Rivera et al., 2004). We think that direct estimation of correlation distance
b using the autocorrelation function, or our estimation method, captures the shortest
dominant cycle in the sedimentary layers. This would explain why the fractal behavior
seems to hold for larger scales in Figures 3(e) and 3(f).

Parameter H, estimated from well logs, is 0 < H ≤ 0.5 and consistent with
an antipersistent fractional Brownian motion characteristic of cyclicity (see Table 1).
The Hurst exponent commonly exhibits some antipersistence in sediments with values
from 0.2 to 0.5 for sandstones (Dolan et al., 1998; Lu et al., 2002). High values of
0.5 and 0.6 could be interpreted, in a clastic context, to be caused by a transitional
deposition involving persistency, as in natural floods. Natural flood records exhibit a
Hurst exponent, 0.5 ≤ Hu ≤ 1.0, associated with so-called black noise (Hurst, 1951;
Mandelbrot and Wallis, 1969).
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Seismic-scale heterogeneities

Inside a main facies, we can not recover the short wavelengths of type 1 in the
O’Doherty-Anstey classification because of well-logging tool limitation. Type 3 of
the classification includes Milankovitch cycles of about 10 to 20 m and third-order
sea-level cycles from 15 to 300 m (Anstey and O’Doherty, 2002a). Seismic reflectors
are conventionally identified as being chronostratigraphic horizons separating different
geological units. They correspond to the wavelength of conventional seismic surveys,
up to 100 Hz, and should induce some resonant scattering with “friendly” multiples.
Multipathing is observed for this ratio of seismic wavelength to the size of hetero-
geneities, as shown by numerical experiments (Frankel and Clayton, 1986). This do-
main should be treated using wave-localization theory and the Rytov method. These
could nevertheless fail to explain the data because of quasi-periodicity of the medium
at this scale, violating the ergodicity assumption required by wave-localization theory.
Statistical methods using the autocorrelation function seem to be adapted to describe
quasi-periodic media when the ratio of b over the seismic wavelength is small. When
the wavelength is of the same size, local quasi-cyclicity of the sedimentary sequence
should not be ignored (Morlet et al., 1982; Stovas and Ursin, 2007).

The non-Gaussian nature and non-stationarity of sedimentary layers call for more
sophisticated methods to be used, especially in order to capture larger scale pseudo-
cyclic heterogeneities, as, for example, a multifractal analysis (Marsan and Bean,
2003) or a local cyclicity detection by wavelet analysis (Rivera et al., 2004). The
wavelet transform was indeed introduced so that seismic signals in locally cyclic sed-
imentary layers could be analyzed (Morlet et al., 1982).

SCATTERING ATTENUATION IN 3D

Different scattering regimes exist when waves propagate in heterogeneous media, ac-
cording to the ratio of the wavelength, λ, to the size, b, of heterogeneities. The
formalism including the different scattering regimes, when heterogeneities are mod-
eled by spherical inclusions, is the Mie scattering theory. Recent experimental results
(Le Gonidec and Gibert, 2007) on sonic-wave reflectivity in a granular medium, made
up of beads of size b in a water tank, illustrate this classification :

1. for low frequencies, when λ > πb, backward scattering is dominant, the Born
approximation can be used, and the regime is Rayleigh scattering;

2. for wavelengths similar in size to heterogeneity, when πb > λ > πb/2, lateral
scattering is important, multiples should not be neglected, and the regime is
called resonant scattering; and

3. for high frequencies, when πb/2 > λ, waves are scattered mainly forward, and
localization theory and the Rytov formalism are appropriate.
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Experiments have demonstrated that wave reflectivity strongly decreases when the
wavelength of the incident wave is twice the diameter of the beads, for which lateral
scattering starts to be dominant. Mean wavefield formalism is valid only for a low
frequency, when the wavelength is larger than the size of heterogeneities because of the
assumptions in the derivation (Karal and Keller, 1964). The Born approximation can
describe the Rayleigh regime and the approach of resonant phase scattering (Frankel
and Clayton, 1986; Sato and Fehler, 1998). For wavelengths shorter than the size of
heterogeneities, artificial decoherence by phase randomization occurs (Wu, 1982; Sato
and Fehler, 1998). We intend to describe the 3D attenuation in a stochastic fractal
medium, when kb ≤ 1, which is relevant for seismic survey frequencies. The limit
of validity corresponds to wavelengths approaching the size of heterogeneities. We
assume heterogeneities to be isotropic. The schemes in Figure 5 compare a realistic
geological structure with two different end-member models. Scattering calculations
in 1D underestimate the scattering loss by small-scale heterogeneities.

(a) (b) (c)

Figure 5: Schematic comparison of single scattering effects, during a vertical wave
propagation in sediments, between a realistic geological structure (a) and two end-
member models: horizontal layers with propagation including 1D scattering (b) and
isotropic heterogeneities with 3D scattering (c).

Low-frequency waves in 3D isotropic heterogeneous media

A scalar wave u(x, ω) in a weakly inhomogeneous medium (Chernov, 1960; Tatarski,
1961; Karal and Keller, 1964) satisfies the Helmholtz wave equation

∆u(x, ω) + k2
0 [1 + f(x)]2 u(x, ω) = 0 , (16)

where f(x) is a small perturbation of the medium from homogeneity, and k0 = ω/c0.
Phase velocity c0 is the background velocity. Assuming a second-order stationary
statistical distribution for fluctuations f(x) and a zero expectation value 〈f〉 = 0,
spatial covariance of the velocity variations is defined by relation 1. Expectation
〈u(x, ω)〉 of random plane-wave realizations is calculated (Karal and Keller, 1964)
using a perturbation theory to the second order in f(x) by[

∆ + k2
0(1 + σ2)

]
〈u(x, ω)〉 − 4 k4

0 σ
2
∫
N(x′ − x)G(x,x′, ω) 〈u(x′, ω)〉 dx′ = 0 , (17)

where G(x,x′, ω) is Green’s function of the operator [∆ + k2
0], and integration is

performed over the 3D space. The dispersion relation for a plane wave propagating
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in the heterogeneous medium follows as

k2

k2
0

= 1 + σ2
[
1− 4 k2

0

∫
N(r)G(r, ω) eik·rdr

]
, (18)

G(r, ω) =
eik0r

4πr
, (19)

where r = x′ − x is the relative position, with an absolute value r = |r|, and G(r, ω)
is the 3D isotropic free-space Green’s function with the outward radiation condition
(Bleistein et al., 2001). The path of waves should be sufficiently long to significantly
sample medium heterogeneities statistically (Gist, 1994). The Born approximation
is present because of Green’s function. Heterogeneities with the isotropic correlation
function N(r) produce an isotropic wave vector k. Combining Green’s function in
equation 19 with the isotropic integral in equation 5 reduces the squared dispersion
relation of equation 18 to

k2

k2
0

= 1 + σ2

[
1− 4 k2

0

k

∫ ∞
0
N(r) eik0r sin(kr) dr

]
. (20)

Second-order expansion k/k0 = 1 + O(σ2) in the solution constrains validity to the
domain k0b � 1/σ, where b is the characteristic length scale of the heterogeneities.
The second-order approximation for the 3D dispersion relation is finally

k

k0

= 1 +
σ2

2
+ i σ2 k0 [S(0)− S(2k0)] . (21)

Quantity S(k), introduced above, is related to the real and even function E(1)(k),
defined by the isotropic integral of equation 4 :

S(k) =
∫ +∞

0
N(r)eikrdr , (22)

E(1)(k) σ−2 =
∫ +∞

−∞
N(r)eikrdr = 2 Re[S(k)] , (23)

2 i Im[S(k)] = S(k)− S(−k). (24)

Connection to the O’Doherty-Anstey formula is detailed in Appendix A.

Attenuation in 3D fractal media

The energy spectrum, E
(1)
H,b(k), of von Kármán’s autocorrelation function NH,b(r) in

equation 7 is real and even :

E
(1)
H,b(k) σ−2 =

∫ +∞

−∞
NH,b(r) e

ikrdr , (25)

= C
(1)
H

2b

(1 + b2k2)H+ 1
2

. (26)
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Values of S(k) defined by equation 22 are

S(0) = C
(1)
H b , (27)

Re[S(2k0)] =
C

(1)
H b

(1 + 4 b2k2
0)H+ 1

2

. (28)

Coefficient C
(1)
H , defined by equation 8, is an increasing function of exponent H and

has to be calculated numerically, except for some specific values :

C
(1)
H ∼ π/Γ(H)→ 0 for H → 0 ,

C
(1)
−0.25 = 1.3110 . . . , C

(1)
0.25 = 0.5991 . . . , C

(1)
0.5 = 1 ,

C
(1)
0.75 = 1.3317 . . . , C

(1)
1 = π/2 .

The dispersion relation of equation 21 solves for an explicit solution of attenuation
and dispersion :

Re[k/k0] = 1 +
σ2

2
(1 + 2k0 Im[S(2k0)]) , (29)

Im[k/k0] = σ2k0b C
(1)
H

[
1− 1

(1 + 4 b2k2
0)H+ 1

2

]
. (30)

When H = 0.5, the derivation produces simple expressions as detailed in Appendix B.
The use of S∗(k) = S(−k) with the Kramers-Krönig relation can be used to determine
the real part of k. In the context of the second-order approximation, scattering
attenuation in a von Kármán isotropic medium is

1

Q
=

2 Im[k]

Re[k]
= 2 σ2 k0b C

(1)
H

[
1− 1

(1 + 4 b2k2
0)H+ 1

2

]
. (31)

For k0b � 1, the scattering attenuation reduces to the Rayleigh diffusion regime :

1

Q
' 8σ2C

(1)
H

(
H +

1

2

)
(k0b)

3 . (32)

Penetration depth

Waves propagating in disordered media are exponentially attenuated by scattering
(O’Doherty and Anstey, 1971; White et al., 1990). We define penetration depth d(f)
to be the skin depth (van der Baan et al., 2007) for low-frequency waves propagating
in the heterogeneous medium :

1

d(f)
=

k0

2Q
= Im[k] , (33)

d(f) =
b (1 + 4 b2k2

0)H+ 1
2

σ2 (k0b)2C
(1)
H

[
(1 + 4 b2k2

0)H+ 1
2 − 1

] , (34)



Browaeys & Fomel 18 Fractals heterogeneities and attenuation

where f is frequency. Penetration depth d(f) corresponds to a decrease of wave
amplitude by 1/e. For two-way traveltime, recorded amplitude is 14 % of the initial
one. Figure 6 shows the frequency dependence of the penetration depth for different
values of parameters b and H and the scattering attenuation for acoustic P- and S-
waves. Seismic background velocities are VP = 2700 m/s and VS = 1230 m/s.

(a) (b)

(c) (d)

(e) (f)

Figure 6: Penetration depth for P (solid) and S (dashed) scalar waves in heterogeneous
media described by the von Kármán model with σ = 30 %. For b = 5 m, a higher
exponent H decreases the penetration (a, c, e). The value of b strongly influences the
penetration of waves (b, d). The slope break in the attenuation curve (f) determines
the frequency below which our scattering model is valid.

Scattering attenuation 1/Q is proportional to 1/λ3 at low frequencies and corre-
sponds to the Rayleigh diffusion regime. Attenuation increases at higher frequencies,
where 1/Q is proportional to 1/λ and wavelength is comparable to the size of the
heterogeneities. Nevertheless, the validity of our scattering theory is constrained to
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the low-frequency bandwidth until the attenuation curves in Figure 6(f) reach the
change of slope at 45 Hz for S-waves and 70 Hz for P-waves. For a conventional
seismic survey and for correlation length b = 5 m, previously estimated, wavelengths
of P- and S-waves and ratio λ/b are indicated in Table 5.

Wave Frequency (Hz) λ (m) λ/b
P 10 270 54

90 30 6
S 10 123 24

50 25 5

Table 5: Ratio of the wavelength λ over the size of heterogeneities b = 5 m for realistic
seismic frequencies, when VP = 2700 m/s, VS = 1230 m/s.

Scattering is more important for seismic wavelengths with a dimension similar to
that of heterogeneities : high frequencies and S-waves, because their wavelengths are
shorter than P-waves, are more attenuated. Penetration depth is close to infinity at
very low frequencies but decreases drastically in a narrow frequency band, depending
on parameters H and b (see Figure 6). This steep descent shifts to higher frequencies
when the fractal exponent decreases, corresponding to a stronger cyclicity of the
layers. A shorter correlation length of heterogeneities highly improves penetration of
high frequencies for both types of wave (see Figures 6(b) and 6(d)). For large-size
heterogeneities, i.e. b > 20 m, the scattering theory we use is not valid because the
seismic frequencies statisfy k0b ≥ 1. Scattering regimes and the suggested description
of heterogeneities are summarized in Figure 7. Our results therefore ignore the effects
of large cycles in sediments. We refer the reader to Stovas and Ursin (2007) for more
information on the effects of cycles on wave progagation.

5 10 20

Fractal statistics

Rayleigh regime 3D Wave localization regime

Rytov method

Local cycles

Resonant scattering

λ >> λ ~ λ <

 (m)b

bbb

Multiple scattering

Figure 7: Schematic representation, including the suggested description of hetero-
geneities, of the different scattering regimes depending on the ratio between the seis-
mic wavelength λ and the size of heterogeneities b. The scale is for indication only
and depends on the frequency band of the survey.
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Dominant frequency versus depth

If seismic pulse is defined as a Ricker wavelet, a relation can be derived for modifi-
cation of the frequency content of P and S acoustic waves by scattering attenuation.
Dominant frequency fdom(z) with depth z and initial spectrum SI(f) of the source
are defined by

SI(f) =

(
f

f0

)2

e−f
2/f20 , (35)

fdom(z) =
d

df

(
SI(f) e−z/d(f)

)
, (36)

with initial condition fdom(0) = f0, and where d(f) is the penetration depth defined
in equation 34. Dispersion involves different traveltimes at different frequencies but
does not modify the frequency content or amplitude. For convenience, we estimate
dominant frequency as frequency expectation :

fdom(z) =
1

〈SI〉z

∫
f SI(f) e−z/d(f) df , (37)

〈SI〉z =
∫
SI(f) e−z/d(f) df . (38)

Figure 8 shows the evolution of the dominant frequency with depth in fractal media,
with VP = 2700 m/s, VS = 1230 m/s, and standard deviation σ = 30 %. The value of
correlation length b again has a very high impact, whereas the fractal exponent mod-
erately influences results. For a multicomponent seismic survey in a clastic reservoir,
evolution of the peak frequency should show a more important decrease with depth
for PS data than for PP data.

DISCUSSION

The attenuation caused by anticorrelated 3D small-scale heterogeneities can be ex-
plained by a low-frequency scattering theory. The length scales that we estimated
from sonic logs justify this approach for conventional seismic frequencies. The inten-
sity of scattering attenuation and the value of frequency cutoff strongly depend on
the size of the heterogeneities, and S-waves are more attenuated than P-waves at the
same frequency. Using low-frequency P-waves provides a better depth of penetration.
More reflectors can be detected and imaged, but, of course, with less resolution. This
phenomenon was observed in sub-basalt imaging (Ziolkowski et al., 2003). Our anal-
ysis of sonic logs confirms the relevance of a fractal description for the high-frequency
content of quasi-periodic geological layers. Because sediments are highly stratified,
their layered structure has previously motivated use of 1D models for seismic scatter-
ing attenuation, but a realistic estimate needs to be conducted in 3D. More generally,
description of geological heterogeneities and use of scattering theories should be as
depicted in Figure 7.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Evolution of the dominant frequency with depth for P (solid line) and S
(dashed line) scalar waves modeled by a Ricker wavelet (f0 = 60 Hz) in heterogeneous
media with σ = 30 %. For a constant exponent H = 0.25, the dominant frequency
shifts to lower frequencies faster for larger values of b (a, c, e). The exponent H weakly
influences the evolution of the dominant frequency (b, d, f).
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Several limitations should be pointed out in our study. Well logs constitute 1D
samples of the geological medium in the near vertical direction. Use of 3D isotropy
is the simplest assumption consistent with our limited knowledge. We consequently
ignore the anisotropic effect of layering, which undoubtly affects lateral scattering
when λ ∼ b. Also note that the relation between fractal exponent β and parameter
H depends on spatial dimension s. We have therefore proposed different values of pa-
rameter H for depth of penetration and evolution of dominant frequency in Figures 6
and 8 and have attempted to extract some general trends.

Our analysis is limited by the fact that we used variations of the seismic veloc-
ity, but not of density, in order to be consistent with the mean field theory. This
theory retrieves the Backus limit and the Rayleigh diffusion regime. Fortunately,
densities commonly exhibit fewer variations. Meanwhile, analysis of the logarithm of
impedance Z relates directly to the reflection coefficients (Shtatland, 1991). Backscat-
tering is known to be related to impedance fluctuations (Banik et al., 1985; Wu, 1988).
Modification of the Helmholtz equation (16) in 1D to incorporate ln Z was succes-
fully achieved by Banik et al. (1985), and they provided a proof of O’Doherty-Anstey
formula. Impedance Z(z), depending on depth z, and reflection coefficient series R(z)
are connected by

lim
dz→0

R(z + dz/2) = lim
dz→0

Z(z + dz)− Z(z)

Z(z + dz) + Z(z)
, (39)

R(z) =
1

2
d lnZ(z). (40)

Reflection series can reasonably be considered to be Gaussian and stationary only
inside blocky layers, using the segmentation method (Todoeschuck et al., 1990).
Incrementation of the fractional Gaussian noise, corresponding to reflection series
R(z), produces the non-stationary and non-Gaussian fBm describing quantity lnZ(z)
(Shtatland, 1991). A white spectrum of reflectivity coefficients occurs for β = 2 and
generates a Brownian walk describing lnZ(z) and involving an exponential autocorre-
lation. We advocate the use of a non-white reflectivity hypothesis, as previously rec-
ommended by several authors (Todoeschuck et al., 1990; Lancaster and Whitcombe,
2000; Anstey and O’Doherty, 2002b).

CONCLUSIONS

The high-frequency quasi-cyclic variations of seismic velocities can be described as
an antipersistent fractional Brownian motion as demonstrated by our sonic-log data
from a clastic reservoir. The correlation length, estimated for von Kármán’s model, is
about 5 m, but the sonic logs contain larger local cycles at 10 and 20 m : our method
extracts one dominant cycle of deposition. Conventional seismic surveys contain
frequencies as high as 100 Hz, with typical peak frequencies at 25 Hz. Our statistical
description of geological heterogeneities below 10 m can thus be used consistently in
our low-frequency scattering theory to estimate the scattering loss caused by small-
scale heterogeneities.
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Shear waves have shorter wavelengths than compressional waves and can be more
attenuated because they are more sensitive to heterogeneities. We showed the exis-
tence of a high-frequency cutoff for the depth of penetration of waves, whose position
in frequency depends on the maximum size of fractal heterogeneities. The dominant
frequency of a wavelet decreases faster for higher fractal exponents and for larger
characteristic sizes of heterogeneities. This loss of high-frequency content influences
resolution in seismic imaging. Our study recommends using low-frequency P-waves
for deep targets under a strongly heterogeneous overburden.

Agreement of our results with the Backus limit and the Rayleigh diffusion regime
is due to the use of velocity fluctuations. Nevertheless, proper connection with the
O’Doherty-Anstey formula requires use of the logarithm of impedance. Moreover,
more complex, multiple scattering occurs when sizes of heterogeneities are similar to
that of the seismic wavelength. Large-scale local cycles, present in the sonic-log data,
call for incorporation of resonant scattering effects into high-frequency scattering
theories.
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APPENDIX A

O’DOHERTY-ANSTEY FORMULA AND THE MEAN
FIELD THEORY

O’Doherty and Anstey (O’Doherty and Anstey, 1971; Resnick, 1990) proposed that
local transmission coefficient T (ω) for traveltime ∆t in sedimentary layers should be

T (ω) = exp

[
− ω∆t

2Q(ω)

]
= e−R(ω) ∆t, (A-1)

where R(ω) is the spectrum of reflection coefficients, which is related to the spectrum
of impedance fluctuations (Banik et al., 1985). Because we have used velocity fluctu-
ations, attenuation in the dispersion relation of equation 21 depends on the velocity
spectrum :

1

Q(ω)
= 2

Im[k]

Re[k]
, (A-2)

= k0

[
E(1)(0)− E(1)(2k0)

]
, (A-3)
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T (ω) = exp

{
−k0 ω

2

[
E(1)(0)− E(1)(2k0)

]
∆t

}
. (A-4)

These formulae have been previously derived and analyzed (Lerche, 1986; Wu, 1988;
Sato and Fehler, 1998). The term E(1)(2k0) can be interpreted as backward scattering
with exchange wavenumber 2k0, whereas the term E(1)(0) is forward scattering with
exchange wavenumber 0. Both energy terms reduce to 1D expressions because of
isotropic integration, whereas one symmetry axis is imposed by propagation direction
of the wave. Further interpretation can be found using a dynamic effective model for
multiple scattering (Waterman and Truell, 1961) : the scattered waves interfere with
the main wavefield, and their relative phase continuously changes in all directions,
except for significant interferences in forward and backward directions. Previous
1D derivations (Sato and Fehler, 1998) have incorporated a traveltime correction,
corresponding to neglecting forward scattering in order to reproduce the O’Doherty-
Anstey formula. This approach extends validity of the analytical expressions to higher
frequencies, but no simple traveltime phase correction exists for the mean field theory
in 3D. Constant E(1)(0) ensures recovery of the Backus effective medium and the
Rayleigh diffusion regime for very low frequencies.

APPENDIX B

EXPONENTIALLY CORRELATED HETEROGENEITIES

Results have been derived several times (Karal and Keller, 1964; Sato and Fehler,
1998) using exponential correlation function N(r) = exp[−r/b] and are added here
as a specific case with simple analytical expressions within the general framework of
von Kármán’s media. Values of the integral in equation 22 are

S(0) = b , (B-1)

S(2k0) =
b

1− 2 i k0b
. (B-2)

Using these expressions in the dispersion relation of equation 21, the new dispersion
relation, phase velocity c(ω), and attenuation are

k

k0

=
c0

c(ω)
+

i

2Q(ω)
= 1 +

σ2

2

[
1 +

(2 k0b)
2

1− 2 i k0b

]
+O(σ4) , (B-3)

1

c(ω)
=

1

c0

[
1 + σ2 1/2 + (2 k0b)

2

1 + (2 k0b)2

]
, (B-4)

1

Q(ω)
= σ2 8 (k0b)

3

1 + (2 k0b)2
. (B-5)

In the limit of very long wavelengths, i.e. k0 → 0, attenuation and velocity reduce
respectively to the Rayleigh diffusion regime and the effective medium theory of
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Backus (1962) :

1

c(ω)
→ 1

c0

(
1 +

σ2

2

)
, (B-6)

1

Q(ω)
∼ 8σ2 (k0b)

3 → 0 . (B-7)
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