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ABSTRACT

We extend time-domain velocity continuation to the zero-offset 3D azimuthally
anisotropic case. Velocity continuation describes how a seismic image changes
given a change in migration velocity. This description turns out to be of a
wave propagation process, in which images change along a velocity axis. In the
anisotropic case, the velocity model is multi-parameter. Therefore, anisotropic
image propagation is multi-dimensional. We use a three-parameter slowness
model, which is related to azimuthal variations in velocity, as well as their prin-
cipal directions. This information is useful for fracture and reservoir characteri-
zation from seismic data. We provide synthetic diffraction imaging examples to
illustrate the concept and potential applications of azimuthal velocity continua-
tion and to analyze the impulse response of the 3D velocity continuation operator.

INTRODUCTION

Velocity continuation (Fomel, 1994, 2003b) provides a framework for describing how
a seismic image changes given a change in the migration velocity model. Similar in
concept to residual migration (Rothman et al., 1985) and cascaded migrations (Larner
and Beasley, 1987), velocity continuation is a continuous formulation of the same
process. Velocity continuation has found applications in migration velocity analysis
(Fomel, 2003a; Schleicher et al., 2008a) and diffraction imaging (Novais et al., 2006;
Fomel et al., 2007).

Fomel (1994) and Hubral et al. (1996) point out that velocity continuation is a
wave propagation process. Instead of wavefronts propagating as a function of time,
images propagate as a function of migration velocity. Recent work has extended
the concept to heterogeneous and anisotropic velocity models (Alkhalifah and Fomel,
1997; Adler, 2002; Iversen, 2006; Schleicher and Alexio, 2007; Schleicher et al., 2008b;
Duchkov and de Hoop, 2009). To account for anisotropy, the seismic velocity model
must become multi-parameter. Consequentially, velocity continuation generalizes to
a process of implementing image transformations caused by changes in multiple pa-
rameters rather than the single isotropic velocity alone.

Accounting for azimuthal variations in seismic velocity results in better event
focusing and improved imaging in such media (Sicking and Nelan, 2008). Azimuthal
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variation in velocity has been shown to be an indicator of preferentially aligned vertical
fractures (Crampin, 1984), lateral heterogeneity (Levin, 1985), regional stress (Sicking
et al., 2007), or a combination of these factors. However, velocity analysis is commonly
first performed on pre-stack common midpoint (CMP) gathers, where the geologic
cause of any observed azimuthal velocity variation is ambiguous. Without the help
of additional diagnostic gathers such as hybrid or cross-spread gathers (Dunkin and
Levin, 1971), or an interpretive comparison between picked root-mean-square (RMS)
and interval velocities (Jenner, 2008), the cause of azimuthal variations in velocity
can be identified only after migration.

Azimuthal seismic imaging commonly requires iterations between velocity analy-
sis and imaging. Residual azimuthal variations in traveltime after migration can be
measured by using migration binning schemes which preserve both offset and azimuth
information (Cary, 1999; Vermeer, 1999). After the first pass of (isotropic) migration,
azimuthal variations in velocity are detected from residual moveout, which then pro-
vides the velocity model for anisotropic migration. Iterative processing flows that use
these strategies are popular not only because they are fairly efficient and intuitive,
but also because they can be implemented with minimal modification to existing soft-
ware. However, iterative imaging flows cannot guarantee convergence to the correct
or optimal velocity model (Deregowski, 1990). Velocity continuation has the under-
lying strategy of performing velocity analysis and imaging simultaneously, and can
thus be used to directly find an optimal velocity model without iteration. Sicking
et al. (2007) have demonstrated the success of a similar strategy of using imaging
as a velocity analysis tool for 3D multiazimuth reflection seismic data. Azimuthal
velocity continuation can provide a theoretical framework for this approach. With
these benefits as motivation, we extend time-domain velocity continuation to 3D,
accounting for the case of azimuthally variable migration velocity.

THEORY

The theory of velocity continuation formulates the connection between the seismic
velocity model and the seismic image as a wavefield evolution process. In doing so,
the process can be implemented in the same variety of ways as seismic migration.
Seismic migration in its many forms is commonly derived starting at the wave equa-
tion, which is approximated by its time and amplitude components by the eikonal
and transport equations, and if necessary, a system of ray tracing equations. Velocity
continuation is derived in the opposite order (Fomel, 2003b). Starting with a geo-
metrical description of the image, a corresponding kinematic equation for traveltime
is derived to describe how the image moves according to changes in imaging param-
eters. Subsequently, the kinematic equation is used to derive a corresponding wave
equation, which describes the dynamic behavior of the image as an evolution through
imaging parameter coordinates. This section outlines the key steps of this derivation,
starting with a traveltime equation that permits azimuthal variations in velocity.
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Grechka and Tsvankin (1998) truncate a two-dimensional Taylor series expansion
for a generally inhomogeneous anisotropic media to derive the “NMO ellipse” move-
out equation. Geometrically, the NMO ellipse model still assumes that events have
hyperbolic moveout with offset, but it allows the velocity to change with azimuth.
We start here by using the same truncated 2D Taylor series expansion to describe an
azimuth-dependent traveltime equation for the summation surface of zero-offset time
migration,

T (x,y, W) =4 (7 + (x —y)" W (x —y)), (1)

where 7 is the one-way vertical traveltime after migration, x is the (x1,x9) surface
position of the zero-offset receiver in survey coordinates, y is the surface position of
the point source image, and superscript T denotes transpose. The three independent
elements of the symmetric slowness matrix,

Wi Wi
W = 2
< Wi Wa ) ! )

have units of slowness-squared, and the eigenvalues and eigenvectors of W determine
the symmetry axes of the effective anisotropic medium (Grechka and Tsvankin, 1998).
In most common geologic situations, the eigenvalues of W are positive (Tsvankin,
2005), and equation 1 describes an elliptical-hyperbolic traveltime surface in 3D—
hyperbolic in cross-section view and elliptical in map-view. The fast and slow moveout
velocities are aligned with the major and minor axes of this ellipse. W71 and Way are
the squared moveout slownesses along their respective survey coordinates, x; and
Zo. The third parameter, Wis, arises from observing the ellipse in the xi-x5 survey
coordinates, which are generally rotated relative to its major and minor axes.

The three-parameter moveout model of equation 1 is analytically convenient and
practical, but the parameters themselves are not intuitive to interpret in terms of
more common geophysical or geological parameters. However, some simple geometric
observations can help convert the three elements of W into more intuitive measure-
ments. If the ellipse happens to be aligned with the survey coordinates, Wi, = 0.
Finding the rotation angle which properly diagonalizes W therefore allows one to pre-
dict the orientation of the symmetry axes. This amounts to an eigenvalue problem,
where the fast and slow velocities can be found as the eigenvalues and eigenvectors of
W. The eigenvalues, Wy,s and Wy, of the slowness matrix can be found following
Grechka and Tsvankin (1998),

1
Wslow,fast = 5 |:W11 + W22 + \/(Wll - W22)2 + 4W122 . (3)

Since the eigenvalues have units of slowness squared, the smaller eigenvalue is W5 =
1/ UJQCast‘ One can solve for the angle 3 between the acquisition coordinates and the
symmetry axes by using the formula found by Grechka and Tsvankin (1998),
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1| Waz — Wi + \/(W22 — Wii)? +4W
2Whs

£ =tan~ (4)

The eigenvalues can then be used together with 3 to solve for the zero-offset migration
slowness S as a function of source-receiver azimuth 6:

S%(0) = Wow cos®(0 — B) + W fast sin?(0 — 33). (5)

Equations 3-5 allow one to convert the mathematically convenient parameters of
W to more intuitive parameters, such as the fastest and slowest propagation veloci-
ties (Viast,Vsiow), the azimuth of the slowest velocity (), and the percent anisotropy
(0 =100 % (1 = Viiow/Vyast)). Alternatively, W can be converted into other common
geophysical parametrizations. For example, Grechka and Tsvankin (1998) show that
once the effective parameters W have been converted to slowness as a function of az-
imuth by equation 5, they can be expressed in terms of horizontal transverse isotropy
parameters as,

1 1+ 25Msin%(0)

2
0 pu—
SO = 1w

(6)

where §) is the Thomsen-style parameter (Thomsen, 1986), introduced by Tsvankin
(1997), and Vpy is the vertical P-wave velocity.

Conventionally, one assumes that equation 1 characterizes a particular event de-
fined in image coordinates (x,7), but one can also describe how that event would
transform given a change in the image parameters W. Regardless of the velocity
model, the traveltime 7" must remain unchanged between different images. From this
observation, we arrive at the following set of conditions:

oT?
Vi T? = ( otk ) =87V, +8W(x —y) =0, (7)
(o2
and,
oT? oT?
VwT? = | 9 B | =87Vwr +4(x—y)(x—y)" =0. (8)
8W12 3W22

Combining and reducing these conditions yields a system of equations that are defined
only in the image parameter coordinates,

2
5 or N T (WZQ% - Wua%) B
anl (W122 - W11W22)2
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or or 2
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(11)

The system of kinematic equations describing azimuthally anisotropic velocity contin-
uation is then found by combining equations 9-11. In a vector notation, this becomes

Vw4 W Ver (Vor) W =0, (12)

where V, and Vw are in the form given by equations 7 and 8.

The method of characteristics (Courant and Hilbert, 1989) provides a link be-
tween a kinematic equation (such as 12) and its corresponding wave-type equation.
Fomel (2003b) demonstrates specifically how the method can be used to derive a
velocity continuation wave equation from its kinematic counterpart. By first setting
the characteristic surface condition,

v=t—1(x,W) =0, (13)

and replacing 7 with ¢ and ¢, we obtain an alternative form of equation 12,

w4 WV (V) W =0 (14

Equation 13 guarantees that the wavefronts of time-domain image wavefield P exist
only where the arrival time 7 is equal to the recorded time t at a given location. Now
take both & and &; to represent each of ¢, Wiy, Wi, Wag, 21, and z9. According to
the method of characteristics, if A;; is the coefficient in front of gg g—g’j from kinematic
equation 14, then the corresponding wave equation will have the same coefficients A;;
2
32‘;53‘
13, and is included in the first term of equation 14 to facilitate the use of the method
of characteristics. Then, by introducing P,, as the spatial Hessian matrix of the

wavefield,

in front of each derivative. The time-derivative 1), is equal to 1 given equation

Oxo0x1 amg

0P o%p
ox? O0x10x
Poo=1 &b “op | (15)



Burnett € Fomel 6 Azimuthal velocity continuation

we arrive at the azimuthally anisotropic post-stack velocity continuation wave equa-
tion,

t
VwP, = —§W—1me—1. (16)

In the isotropic case, W is diagonal and W7, = Wy, Equation 16 then reduces to
the isotropic velocity continuation equation first derived by Claerbout (1986).

METHOD

Since velocity continuation is described by a wave equation, it can be implemented in
analogous ways to seismic migration. Here, we demonstrate a spectral implementation
of equation 16. By first stretching the time coordinate of an input image from ¢ to
t = t?/2, and then taking its 3D Fourier transform, equation 16 becomes the reduced
partial differential equation,

N 1 ~
iOVwP = 5W—lkkTW—lp, (17)

where (2 is the Fourier dual of  and k is the wavenumber vector (Fourier dual of x).
Equation 17 has the analytical solution,

P(Q, ky, ko, W) = P(, Ky, ko, Wo)eza® (W =W, Dk (18)

which shows that continuation of an image from an arbitrary Wy to W can be
achieved by multiplication with a shifting exponential in the Fourier domain. One
can also directly migrate an unmigrated image by using the 2x2 matrix W' = 0 for
the initial velocity. In practice, the coordinate stretch from t to ¢ should be carefully
applied as data will be compressed along the time-axis for early samples.

With a range of slowness matrices W, equation 18 can be used to quickly generate
the corresponding range of anisotropically migrated images. When the correct velocity
model is used, diffractions collapse to points, which we recognize as the image coming
into focus. Although constant velocity models are used for each image, this type
of spectral implementation can still be useful in the heterogeneous case, as different
parts of the image will come into focus locally as the appropriate velocity is used
(Harlan et al., 1984; Fowler, 1984). Once the range of images is generated, we search
for the best-focused image at each output location. We use the image attribute of
kurtosis, defined as,

[[Px,t,W)dxdt

AW) = [ [ P2(x,t, W) dx dt]>’

(19)
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to quantify how well a location is focused in a particular image (Wiggins, 1978; Fomel
et al., 2007). Including integration limits specifies a window size for locally measur-
ing kurtosis in the image. In application, the integration limits control either the size
of a “sliding window”, or when viewing kurtosis as a local attribute (Fomel, 2007),
they can be used to control the smoothness enforced by shaping regularization. In
either case, the integration limits control a trade-off between the robustness of the
focusing measurement and the resolution. From experience, typical limits for field
data correspond to window sizes on the order of 10* samples in each dimension. It
should be noted that the traveltime approximation of equation 1 loses accuracy in the
presence of strong lateral heterogeneity, but is commonly used to estimate smooth
effective parameter models. Following the maximum values through the resulting
six-dimensional kurtosis hypercube, ¢(t,x, W), and then slicing corresponding pieces
from the output images volume, P(t,x, W), reveals an effective medium based het-
erogeneous velocity model and a well-focused image. This spectral implementation
and slicing procedure is similar to searching through a set of constant-velocity f — k
migrations, and can be completed without any prior knowledge of the velocity model
(Fowler, 1984; Mikulich and Hale, 1992).

EXAMPLES

Two simple synthetic examples are provided below to illustrate 3D velocity con-
tinuation over a range of velocity models. In the first example, we apply velocity
continuation to a point diffractor. In the second example, we apply the method
to a synthetic post-stack image of a set of faults. The second example illustrates
fracture characterization through diffraction imaging as a potential application for
3D azimuthal velocity continuation. The data in both examples are modeled using
equation 1, which geometrically approximates a diffraction surface as an elliptical-
hyperbolic surface. Field data and more accurately modeled data will generally also
exhibit nonhyperbolic moveout, for which equation 1 does not account. The physi-
cal validity and limitations of equation 1 are thoroughly discussed by Grechka and
Tsvankin (1998), but we focus here on how well diffractions can be collapsed, and
how well the velocity parameters can be measured, if the data are ideally described
by equation 1.

Figure 1a shows a single diffraction event, modeled using equation 1. The fastest
direction of propagation is at 3=105° counter-clockwise from the x; axis, with V;,,=3.50
km/s. The data in Figure la were modeled with 0=7% anisotropy, which may be
quite high for most field cases, but it was chosen to allow the azimuthal variations
in diffraction moveout to be visibly pronounced. As described above, we first stretch
the time axis from ¢ to ¢ and take the 3D Fourier transform of the data. Then we
apply the phase-shift prescribed by equation 18 for a range of W. We found it more
intuitive to specify the parameter ranges in terms of V.., 5, and o, and then convert
them at each step into the three parameters of W for use in equation 18. The inverse
of the in-line velocity squared 1/ Vﬁl is equivalent to W7y, which, along with a given
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fast azimuth g and percent anisotropy o, can be used to calculate Wi, and Was using
equations 3-5. Last, we apply the 3D inverse Fourier transform and unstretch from ¢
to t to obtain the 6D image volume. Examples from the image volume using incorrect
parameters are shown in Figures 1b-1c. The correct parameters are used in Figure
1d, where the image is well-focused.

a) Diffraction b) Overmigrated

xq (km) x2 (km) xq (km) xo (km)

c) Isotropic d) Correct Parameters

xq (km) xg (km) xq (km) xg (km)

Figure 1: (a) A single azimuthally anisotropic diffraction. (b) The diffraction mi-
grated by velocity continuation using correct parameters except c=10, resulting in
overmigration along xy. (c¢) Migration using the correct Wiy, but assuming isotropy.
The result is now undermigrated along x. (d) Migration using correct parameters.
The image is well focused in both directions.

Since only a single diffraction is present in this example, we can measure kurtosis
over a window spanning the entirety of each 3D image, reducing the kurtosis volume
from 6D to 3D. Figure 2 is a 2D slice of the kurtosis volume at the correct Wi; = 1/ Vfl
value of 0.0935 = 1/(3.27 km/s)?. The peak of the kurtosis map is near the correct
values of o=7 and f=105°. Once the peak of the kurtosis map is identified, one could
refine the increments around the peak to yield more accurate estimates. The physical
limitations of resolving azimuthal velocity parameters are discussed by Al-Dajani and
Alkhalifah (2000).



Burnett € Fomel 9 Azimuthal velocity continuation

In practice, a conventional in-line 2D velocity analysis directly yields Wi; from
1/ Vfl, so Figure 2 could illustrate a realistic scenario for using 3D velocity continua-
tion to improve upon a previous isotropic velocity model. In such a case, one would
use previous V,, picks to hold Wy, constant, and then effectively test a variety of Wi,
and Wsy values. Since Wi and Wy, are measured with respect to the survey coordi-
nates, either (or both) can be measured independently via a single-azimuth semblance
scan, along x; or xy, respectively. The best isotropic velocity based on a fully mul-
tiazimuth semblance scan will generally not represent either Wi, or Was, but it can
help limit the range of test parameters. Note that our method does not require prior
knowledge of the velocity model, but without prior knowledge, the kurtosis measure
remains a 6D volume. Although more difficult to visualize, the 6D kurtosis volume
is computationally just as easily scanned for optimal imaging parameters as the 2D

map in Figure 2.

Anisotropy (Percent)

Angle (Degrees)
170 160 150 140 130 120 110 100

Kurtosis

Figure 2: Kurtosis values for the velocity continuation of the diffraction in Figure 1a.
The map covers a range of anisotropy and angle values with an increment in 5 of
5° and an increment in o of 0.5%. The correct values at 105° and 7% anisotropy
(indicated by crosshairs) coincide with the peak of the kurtosis map.

In the next example, we illustrate the concept of applying 3D anisotropic velocity
continuation to diffraction imaging and fracture characterization. Figure 3a shows
a 3D synthetic post-stack diffraction data set, equivalent to the ideal separation of
diffractions from specular reflections in post-stack data following Fomel et al. (2007).
A fault map from Hargrove (2010) (shown in Figure 3a) was digitized and used
to create a 3D fracture model. Each fault location was used to generate a point
diffraction in a homogeneous anisotropic background via equation 1. A timeslice
of the modeled diffraction data is shown in Figure 3b. The faults in the model
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typically have a strike of 112°, and in cases where faults and nearby fractures (which
more likely influence the seismic velocity) are similarly aligned, the fast direction of
seismic wave propagation tends to align with their strike. By assuming a typical tight
sandstone velocity of Vi,=4.0 km/s with 3% anisotropy, we choose the modeling W
to be comprised of W1;=0.0659, W4,=0.0631, and W,=0.0014 (all in s*/km?). This
results in a fast velocity direction along the strike of the faults. In Figure 3d, we see
that 3D velocity continuation using the correct parameters (again found by maximum
kurtosis) allows the faults to be clearly imaged. If an intermediate isotropic velocity
model is used, as in Figure 3c, the diffractions are still imaged, but they are not
as well-focused compared to the anisotropically migrated diffractions in Figure 3d.
Conventionally, diffraction arrivals such as those in Figure 3a may be viewed as noise,
but by separating them and treating them as signal, we can see here that imaging
of steep and detailed features while simultaneously extracting anisotropy information
may be possible.

a) Fault Map b) Fault Diffractions

xq (km)

d) Anisotropic Velocity Continuation

x1 (km) xq (km)

Figure 3: (a) Fault map from Northwest Scotland (Hargrove, 2010) used to model
diffraction data. (b) Synthetic post-stack diffraction data modeled using equation 1
and a 3D model based on the fault map in (a). (c) Diffractions from (b) migrated
using an isotropic velocity model. (d) Diffractions from (b) migrated by anisotropic
3D velocity continuation.
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DISCUSSION AND CONCLUSIONS

By extending time-domain velocity continuation to the azimuthally anisotropic 3D
case, we have combined the concepts of azimuthal imaging and diffraction imaging.
We assume a three-parameter migration slowness model that allows velocity to vary
elliptically with azimuth. We have provided simple examples to illustrate the potential
application of our method to fracture characterization through diffraction imaging.
By treating diffractions as signal, our method performs azimuthal analysis on post-
stack data, without the requirement for common-offset-vector or offset-vector-tile
binning schemes. This is possible because, unlike reflections, diffractions can preserve
azimuthal information post-stack. Post-stack data volumes have obvious advantages
over pre-stack or vector-binned data for analysis, including smaller memory size, and
improved signal-to-noise ratio.

Allowing azimuthal variation in the migration velocity will result in improved
imaging, which is clearly a benefit of 3D velocity continuation. However, the poten-
tial for fracture characterization may be even more useful. Our method has many of
the same ideas as the azimuthal imaging and fracture characterization flow proposed
by Sicking et al. (2007) for reflection data. Under the velocity continuation frame-
work, we can extend the azimuthal imaging idea to 3D diffraction imaging. Since
diffraction-generating fractures and faults are often nearly vertical and preferentially
aligned, they can be associated with azimuthal anisotropy. Fomel et al. (2007) demon-
strate that it is possible to separate diffractions from specular reflections, and then
image their associated discontinuities through the use of velocity continuation. Their
method operates on post-stack data, as they show that diffractions are highly sensi-
tive to migration velocity, even in the zero-offset case. Al-Dajani and Fomel (2010)
have successfully demonstrated zero-offset diffraction image focusing as a fracture
detection attribute on azimuth-sectored 3D field data. Our proposed method uses
multi-azimuth image focusing primarily as a velocity analysis criterion, but kurtosis
could also be used as an image attribute. In cases where subsurface fractures cause
azimuthal anisotropy, kurtosis as an attribute may be indicative of fracture intensity
(Al-Dajani and Fomel, 2010). By applying velocity continuation to 3D diffraction
imaging, one may be able to estimate both the orientation and the intensity of frac-
tures from the resulting anisotropic velocity model and maximum kurtosis volumes,
respectively. This information can be useful in reservoir development, as it can pro-
vide insight to subsurface fluid flow behavior.

Although the spectral implementation of our method allows a range of possible
images to be computed efficiently, it demands large amounts of memory to store a suite
of images as well as the kurtosis volume. Modern computational hardware makes our
approach feasible as-is, especially for target-oriented imaging and analysis strategies.
Future studies may lead to better optimization-based approaches to finding local
kurtosis maxima, in which case, our method could be practical for dense parameter
estimation throughout full 3D volumes.

The underlying strategy of velocity continuation is to simultaneously estimate the
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velocity model as the data are imaged. This is beneficial in the case of azimuthal
anisotropy discussed here, as the ambiguity between structural heterogeneity and
anisotropy is handled without the need for iteration. Other multi-parameter seismic
imaging problems, such as converted-wave imaging, which are also conventionally
handled by iterative flows, could also benefit from pre-stack versions of the 3D velocity
continuation strategy.
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