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ABSTRACT

Spectral factorization is a computational procedure for constructing minimum-
phase (stable inverse) filters required for recursive inverse filtering. We present
a novel method of spectral factorization. The method iteratively constructs an
approximation of the minimum-phase filter with the given autocorrelation by
repeated forward and inverse filtering and rearranging the terms. This procedure
is especially efficient in the multidimensional case, where the inverse recursive
filtering is enabled by the helix transform.
To exemplify a practical application of the proposed method, we consider the
problem of smooth two-dimensional data regularization. Splines in tension are
smooth interpolation surfaces whose behavior in unconstrained regions is con-
trolled by the tension parameter. We show that such surfaces can be efficiently
constructed with recursive filter preconditioning and introduce a family of cor-
responding two-dimensional minimum-phase filters. The filters are created by
spectral factorization on a helix.

INTRODUCTION

Spectral factorization is the task of estimating a minimum-phase signal from a given
power spectrum. The advent of the helical coordinate system (Mersereau and Dud-
geon, 1974; Claerbout, 1998) has led to renewed interest in spectral factorization al-
gorithms, since they now apply to multi-dimensional problems. Specifically, spectral
factorization algorithms provide the key to rapid multi-dimensional recursive filtering
with arbitrary functions, which in turn has geophysical applications in preconditioning
inverse problems (Clapp et al., 1998; Fomel and Claerbout, 2003), wavefield extrapo-
lation (Rickett et al., 1998; Rickett, 2000; Zhang et al., 2000; Zhang and Shan, 2001),
and 3-D noise attenuation (Ozdemir et al., 1999a,b; Rickett et al., 2001).
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The Kolmogoroff (cepstral or Hilbert transform) method of spectral factorization
(Kolmogoroff, 1939; Claerbout, 1976; Oppenheim and Shafer, 1989) is often used by
the geophysical community because of its computational efficiency. However, as a
frequency-domain method, it has certain limitations. For example, the assumption
of periodic boundary conditions often requires extreme amounts of zero-padding for
a stable factorization. This is one of the limitations which make this method incon-
venient for multi-dimensional applications.

The Wilson-Burg method, introduced in this paper, is an iterative algorithm for
spectral factorization based on Newton’s iterations. The algorithm exhibits quadratic
convergence. It provides a time-domain approach that is potentially more efficient
than the Kolmogoroff method. We include a detailed comparison of the two methods.

Recent surveys (Goodman et al., 1997; Sayed and Kailath, 2001) discuss some
other methods for spectral factorization, such as the Schur method (Schur, 1917),
the Bauer method (Bauer, 1955) and Wilson’s original method (Wilson, 1969). The
latter is noted for its superb numerical properties. We introduce Burg’s modification
to this algorithm, which puts the computational attractiveness of this method to a
new level. The Wilson-Burg method avoids the need for matrix inversion, essential
for the original Wilson’s algorithm, reduces the computational effort from O(N3)
operations to O(N2) operations per iteration. A different way to accelerate Wilson’s
iteration was suggested by Laurie (1980). We have found the Wilson-Burg algorithm
to be especially suitable for applications of multidimensional helical filtering, where
the number of filter coefficients can be small, and the cost effectively reduces to O(N)
operations.

The second part of the paper contains a practical example of the introduced spec-
tral factorization method. The method is applied to the problem of two-dimensional
smooth data regularization. This problem often occurs in mapping potential fields
data and in other geophysical problems. Applying the Wilson-Burg spectral fac-
torization method, we construct a family of two-dimensional recursive filters, which
correspond to different values of tension in the tension-spline approach to data reg-
ularization (Smith and Wessel, 1990). We then use the constructed filters for an
efficient preconditioning of the data regularization problem. The combination of an
efficient spectral factorization and an efficient preconditioning technique provides an
attractive practical method for multidimensional data interpolation. The technique
is illustrated with bathymetry data from the Sea of Galilee (Lake Kinneret) in Israel.

METHOD DESCRIPTION

Spectral factorization constructs a minimum-phase signal from its spectrum. The
algorithm, suggested by Wilson (1969), approaches this problem directly with New-
ton’s iterative method. In a Z-transform notation, Wilson’s method implies solving
the equation

S(Z) = A(Z)Ā(1/Z) (1)
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for a given spectrum S(Z) and unknown minimum-phase signal A(Z) with an iterative
linearization

S(Z) = At(Z)Āt(1/Z) + At(Z)[Āt+1(1/Z)− Āt(1/Z)] + Āt(1/Z)[At+1(Z)− At(Z)]

= At(Z)Āt+1(1/Z) + Āt(1/Z)At+1(Z)− At(Z)Āt(1/Z) , (2)

where At(Z) denotes the signal estimate at iteration t. Starting from some initial
estimate A0(Z), such as A0(Z) = 1, one iteratively solves the linear system (2) for the
updated signal At+1(Z). Wilson (1969) presents a rigorous proof that iteration (2)
operates with minimum-phase signals provided that the initial estimate A0(Z) is
minimum-phase. The original algorithm estimates the new approximation At+1(Z)
by matrix inversion implied in the solution of the system.

Burg (1998, personal communication) recognized that dividing both sides of equa-
tion (2) by Āt(1/Z)At(Z) leads to a particularly convenient form, where the terms
on the left are symmetric, and the two terms on the right are correspondingly strictly
causal and anticausal:

1 +
S(Z)

Āt(1/Z) At(Z)
=
At+1(Z)

At(Z)
+

Āt+1(1/Z)

Āt(1/Z)
(3)

Equation (3) leads to the Wilson-Burg algorithm, which accomplishes spectral
factorization by a recursive application of convolution (polynomial multiplication)
and deconvolution (polynomial division). The algorithm proceeds as follows:

1. Compute the left side of equation (3) using forward and adjoint polynomial
division.

2. Abandon negative lags, to keep only the causal part of the signal, and also keep
half of the zero lag. This gives us At+1(Z)/At(Z).

3. Multiply out (convolve) the denominator At(Z). Now we have the desired result
At+1(Z).

4. Iterate until convergence.

An example of the Wilson-Burg convergence is shown in Table 1 on a simple 1-D
signal. The autocorrelation S(Z) in this case is 1334+867 (Z + 1/Z)+242 (Z2 + 1/Z2)+
24 (Z3 + 1/Z3), and the corresponding minimum-phase signal is A(Z) = (2 +Z)(3 +
Z)(4 + Z) = 24 + 26Z + 9Z2 + Z3. A quadratic rate of convergence is visible from
the table. The convergence slows down for signals whose polynomial roots are close
to the unit circle (Wilson, 1969).

The clear advantage of the Wilson-Burg algorithm in comparison with the original
Wilson algorithm is in the elimination of the expensive matrix inversion step. Only
convolution and deconvolution operations are used at each iteration step.



4

iter a0 a1 a2 a3

0 1.000000 0.000000 0.000000 0.000000
1 36.523964 23.737839 6.625787 0.657103
2 26.243151 25.726116 8.471050 0.914951
3 24.162354 25.991493 8.962727 0.990802
4 24.001223 25.999662 9.000164 0.999200
5 24.000015 25.999977 9.000029 0.999944
6 23.999998 26.000002 9.000003 0.999996
7 23.999998 26.000004 9.000001 1.000000
8 23.999998 25.999998 9.000000 1.000000
9 24.000000 26.000000 9.000000 1.000000

Table 1: Example convergence of the Wilson-Burg iteration

Comparison of Wilson-Burg and Kolmogoroff methods

The Kolmogoroff (cepstral or Hilbert transform) spectral factorization algorithm
(Kolmogoroff, 1939; Claerbout, 1976; Oppenheim and Shafer, 1989) is widely used
because of its computationally efficiency. While this method is easily extended to
the multi-dimensional case with the help of helical transform (Rickett and Claerbout,
1999), there are several circumstances that make the Wilson-Burg method more at-
tractive in multi-dimensional filtering applications.

• The Kolmogoroff method takes O(N logN) operations, where N is the length
of the auto-correlation function. The cost of the Wilson-Burg method is pro-
portional to the [number of iterations] × [filter length] ×N . If we keep the
filter small and limit the number of iterations, the Wilson-Burg method can be
cheaper (linear in N). In comparison, the cost of the original Wilson’s method
is the [number of iterations] × O(N3).

• The Kolmogoroff method works in the frequency domain and assumes periodic
boundary conditions. Auto-correlation functions, therefore, need to be padded
with zeros before they are Fourier transformed. For functions with zeros near
the unit circle, the padding may need to be many orders of magnitude greater
than the original filter length, N . The Wilson-Burg method is implemented in
the time-domain, where no extra padding is required.

• Newton’s method (the basis of the Wilson-Burg algorithm) converges quickly
when the initial guess is close to the solution. If we take advantage of this prop-
erty, the method may converge in one or two iterations, reducing the cost even
further. It is impossible to make use of an initial guess with the Kolmogoroff
method.
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• The Kolmogoroff method, when applied to helix filtering, involves the dangerous
step of truncating the filter coefficients to reduce the size of the filter. If the auto-
correlation function has roots close to the unit circle, truncating filter coefficients
may easily lead to non-minimum-phase filters. The Wilson-Burg allows us to fix
the shape of the filter from the very beginning. This does not guarantee that we
will find the exact solution, but at least we can obtain a reasonable minimum-
phase approximation to the desired filter. The safest practical strategy in the
case of an unknown initial estimate is to start with finding the longest possible
filter, remove those of its coefficients that are smaller than a certain threshold,
and repeat the factoring process again with the shorter filter.

Factorization examples

The first simple example of helical spectral factorization is shown in Figure 1. A
minimum-phase factor is found by spectral factorization of its autocorrelation. The
result is additionally confirmed by applying inverse recursive filtering, which turns
the filter into a spike (the rightmost plot in Figure 1.)

A practical example is depicted in Figure 2. The symmetric Laplacian opera-
tor is often used in practice for regularizing smooth data. In order to construct a
corresponding recursive preconditioner, we factor the Laplacian autocorrelation (the
biharmonic operator) using the Wilson-Burg algorithm. Figure 2 shows the resul-
tant filter. The minimum-phase Laplacian filter has several times more coefficients
than the original Laplacian. Therefore, its application would be more expensive in
a convolution application. The real advantage follows from the applicability of the
minimum-phase filter for inverse filtering (deconvolution). The gain in convergence
from recursive filter preconditioning outweighs the loss of efficiency from the longer
filter. Figure 3 shows a construction of the smooth inverse impulse response by appli-
cation of the C = PPT operator, where P is deconvolution with the minimum-phase
Laplacian. The application of C is equivalent to a numerical solution of the bihar-
monic equation, discussed in the next section.

APPLICATION OF SPECTRAL FACTORIZATION:
REGULARIZING SMOOTH DATA WITH SPLINES IN

TENSION

The method of minimum curvature is an old and ever-popular approach for con-
structing smooth surfaces from irregularly spaced data (Briggs, 1974). The surface
of minimum curvature corresponds to the minimum of the Laplacian power or, in
an alternative formulation, satisfies the biharmonic differential equation. Physically,
it models the behavior of an elastic plate. In the one-dimensional case, the min-
imum curvature method leads to the natural cubic spline interpolation (de Boor,
1978). In the two-dimensional case, a surface can be interpolated with biharmonic
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Figure 1: Example of 2-D Wilson-Burg factorization. Top left: the input filter. Top
right: its auto-correlation. Bottom left: the factor obtained by the Wilson-Burg
method. Bottom right: the result of deconvolution.
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Figure 2: Creating a minimum-phase Laplacian filter. Top left: Laplacian filter.
Top right: its auto-correlation (bi-harmonic filter). Bottom left: factor obtained by
the Wilson-Burg method (minimum-phase Laplacian). Bottom right: the result of
deconvolution.

Figure 3: 2-D deconvolution with the minimum-phase Laplacian. Left: input. Center:
output of deconvolution. Right: output of deconvolution and adjoint deconvolution
(equivalent to solving the biharmonic differential equation).
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splines (Sandwell, 1987) or gridded with an iterative finite-difference scheme (Swain,
1976). We approach the gridding (data regularization) problem with an iterative
least-squares optimization scheme.

In most of the practical cases, the minimum-curvature method produces a vi-
sually pleasing smooth surface. However, in cases of large changes in the surface
gradient, the method can create strong artificial oscillations in the unconstrained
regions. Switching to lower-order methods, such as minimizing the power of the
gradient, solves the problem of extraneous inflections, but also removes the smooth-
ness constraint and leads to gradient discontinuities (Fomel and Claerbout, 1995).
A remedy, suggested by Schweikert (1966), is known as splines in tension. Splines
in tension are constructed by minimizing a modified quadratic form that includes a
tension term. Physically, the additional term corresponds to tension in elastic plates
(Timoshenko and Woinowsky-Krieger, 1968). Smith and Wessel (1990) developed a
practical algorithm of 2-D gridding with splines in tension and implemented it in the
popular GMT software package.

In this section, we develop an application of helical preconditioning to gridding
with splines in tension. We accelerate an iterative data regularization algorithm
by recursive preconditioning with multidimensional filters defined on a helix (Fomel
and Claerbout, 2003). The efficient Wilson-Burg spectral factorization constructs a
minimum-phase filter suitable for recursive filtering.

We introduce a family of 2-D minimum-phase filters for different degrees of ten-
sion. The filters are constructed by spectral factorization of the corresponding finite-
difference forms. In the case of zero tension (the original minimum-curvature for-
mulation), we obtain a minimum-phase version of the Laplacian filter. The case
of infinite tension leads to spectral factorization of the Laplacian and produces the
helical derivative filter (Claerbout, 2002).

The tension filters can be applied not only for data regularization but also for pre-
conditioning in any estimation problems with smooth models. Tomographic velocity
estimation is an obvious example of such an application (Woodward et al., 1998).

Mathematical theory of splines in tension

The traditional minimum-curvature criterion implies seeking a two-dimensional sur-
face f(x, y) in region D, which corresponds to the minimum of the Laplacian power:∫∫

D

∣∣∇2f(x, y)
∣∣2 dx dy , (4)

where ∇2 denotes the Laplacian operator: ∇2 = ∂2

∂x2 + ∂2

∂y2 .

Alternatively, we can seek f(x, y) as the solution of the biharmonic differential
equation

(∇2)2f(x, y) = 0 . (5)
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Fung (1965) and Briggs (1974) derive equation (5) directly from (4) with the help of
the variational calculus and Gauss’s theorem.

Formula (4) approximates the strain energy of a thin elastic plate (Timoshenko
and Woinowsky-Krieger, 1968). Taking tension into account modifies both the energy
formula (4) and the corresponding equation (5). Smith and Wessel (1990) suggest
the following form of the modified equation:[

(1− λ)(∇2)2 − λ(∇2)
]
f(x, y) = 0 , (6)

where the tension parameter λ ranges from 0 to 1. The corresponding energy func-
tional is ∫∫

D

[
(1− λ)

∣∣∇2f(x, y)
∣∣2 + λ |∇f(x, y)|2

]
dx dy . (7)

Zero tension leads to the biharmonic equation (5) and corresponds to the minimum
curvature construction. The case of λ = 1 corresponds to infinite tension. Although
infinite tension is physically impossible, the resulting Laplace equation does have
the physical interpretation of a steady-state temperature distribution. An important
property of harmonic functions (solutions of the Laplace equation) is that they cannot
have local minima and maxima in the free regions. With respect to interpolation, this
means that, in the case of λ = 1, the interpolation surface will be constrained to have
its local extrema only at the input data locations.

Norman Sleep (2000, personal communication) points out that if the tension term
λ∇2 is written in the form ∇ · (λ∇), we can follow an analogy with heat flow and
electrostatics and generalize the tension parameter λ to a local function depending
on x and y. In a more general form, λ could be a tensor allowing for an anisotropic
smoothing in some predefined directions similarly to the steering-filter method (Clapp
et al., 1998).

To interpolate an irregular set of data values, fk at points (xk, yk), we need to
solve equation (6) under the constraint

f(xk, yk) = fk . (8)

We can accelerate the solution by recursive filter preconditioning. If A is the discrete
filter representation of the differential operator in equation (6) and we can find a
minimum-phase filter D whose autocorrelation is equal to A, then an appropriate
preconditioning operator is a recursive inverse filtering with the filter D. The precon-
ditioned formulation of the interpolation problem takes the form of the least-squares
system (Claerbout, 2002)

K D−1p ≈ fk , (9)

where fk represents the vector of known data, K is the operator of selecting the
known data locations, and p is the preconditioned variable: p = D f . After obtaining
an iterative solution of system (9), we reconstruct the model f by inverse recursive
filtering: f = D−1 p. Formulating the problem in helical coordinates (Mersereau and
Dudgeon, 1974; Claerbout, 1998) enables both the spectral factorization of A and the
inverse filtering with D.
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Finite differences and spectral factorization

In the one-dimensional case, one finite-difference representation of the squared Lapla-
cian is as a centered 5-point filter with coefficients (1,−4, 6,−4, 1). On the same
grid, the Laplacian operator can be approximated to the same order of accuracy
with the filter (1/12,−4/3, 5/2,−4/3, 1/12). Combining the two filters in accordance
with equation (6) and performing the spectral factorization, we can obtain a 3-point
minimum-phase filter suitable for inverse filtering. Figure 4 shows a family of one-
dimensional minimum-phase filters for different values of the parameter λ. Figure 5
demonstrates the interpolation results obtained with these filters on a simple one-
dimensional synthetic. As expected, a small tension value (λ = 0.01) produces a
smooth interpolation, but creates artificial oscillations in the unconstrained regions
around sharp changes in the gradient. The value of λ = 1 leads to linear interpola-
tion with no extraneous inflections but with discontinuous derivatives. Intermediate
values of λ allow us to achieve a compromise: a smooth surface with constrained
oscillations.

Figure 4: One-dimensional
minimum-phase filters for dif-
ferent values of the tension
parameter λ. The filters range
from the second derivative for
λ = 0 to the first derivative for
λ = 1.

To design the corresponding filters in two dimensions, we define the finite-difference
representation of operator (6) on a 5-by-5 stencil. The filter coefficients are chosen
with the help of the Taylor expansion to match the desired spectrum of the operator
around the zero spatial frequency. The matching conditions lead to the following set
of coefficients for the squared Laplacian:

-1/60 2/5 7/30 2/5 -1/60
2/5 -14/15 -44/15 -14/15 2/5
7/30 -44/15 57/5 -44/15 7/30
2/5 -14/15 -44/15 -14/15 2/5

-1/60 2/5 7/30 2/5 -1/60

= 1/60

-1 24 14 24 -1
24 -56 -176 -56 24
14 -176 684 -176 14
24 -56 -176 -56 24
-1 24 14 24 -1

The Laplacian representation with the same order of accuracy has the coefficients
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Figure 5: Interpolating a simple one-dimensional synthetic with recursive filter pre-
conditioning for different values of the tension parameter λ. The input data are shown
on the top. The interpolation results range from a natural cubic spline interpolation
for λ = 0 to linear interpolation for λ = 1.



12

-1/360 2/45 0 2/45 -1/360
2/45 -14/45 -4/5 -14/45 2/45

0 -4/5 41/10 -4/5 0
2/45 -14/45 -4/5 -14/45 2/45

-1/360 2/45 0 2/45 -1/360

= 1/360

-1 16 0 16 -1
16 -112 -288 -112 16
0 -288 1476 -288 0
16 -112 -288 -112 16
-1 16 0 16 -1

For the sake of simplicity, we assumed equal spacing in the x and y direction. The
coefficients can be easily adjusted for anisotropic spacing. Figures 6 and 7 show
the spectra of the finite-difference representations of operator (6) for different values
of the tension parameter. The finite-difference spectra appear to be fairly isotropic
(independent of angle in polar coordinates). They match the exact expressions at
small frequencies.
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-3

-2

-1

0

1

2

3

tension=0

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

tension=0.3

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

tension=0.7

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
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Figure 6: Spectra of the finite-difference splines-in-tension schemes for different values
of the tension parameter (contour plots).

Regarding the finite-difference operators as two-dimensional auto-correlations and
applying the Wilson-Burg method of spectral factorization, we obtain two-dimensional
minimum-phase filters suitable for inverse filtering. The exact filters contain many
coefficients, which rapidly decrease in magnitude at a distance from the first coeffi-
cient. For reasons of efficiency, it is advisable to restrict the shape of the filter so
that it contains only the significant coefficients. Keeping all the coefficients that are
1000 times smaller in magnitude than the leading coefficient creates a 53-point filter
for λ = 0 and a 35-point filter for λ = 1, with intermediate filter lengths for inter-
mediate values of λ. Keeping only the coefficients that are 200 times smaller that
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Figure 7: Spectra of the finite-difference splines-in-tension schemes for different values
of the tension parameter (cross-section plots). The dashed lines show the exact spectra
for continuous operators.

the leading coefficient, we obtain 25- and 16-point filters for respectively λ = 0 and
λ = 1. The restricted filters do not factor the autocorrelation exactly but provide an
effective approximation of the exact factors. As outputs of the Wilson-Burg spectral
factorization process, they obey the minimum-phase condition.

Figure 8 shows the two-dimensional filters for different values of λ and illustrates
inverse recursive filtering, which is the essence of the helix method (Claerbout, 1998).
The case of λ = 1 leads to the filter known as helix derivative (Claerbout, 2002). The
filter values are spread mostly in two columns. The other boundary case (λ = 0) leads
to a three-column filter, which serves as the minimum-phase version of the Laplacian.
This filter is similar to the one shown in Figure 3. As expected from the theory,
the inverse impulse response of this filter is noticeably smoother and wider than the
inverse response of the helix derivative. Filters corresponding to intermediate values
of λ exhibit intermediate properties. Theoretically, the inverse impulse response of
the filter corresponds to the Green’s function of equation (6). The theoretical Green’s
function for the case of λ = 1 is

G =
1

2π
ln r , (10)

where r is the distance from the impulse: r =
√

(x− xk)2 + (y − yk). In the case of

λ = 0, the Green’s function is smoother at the origin:

G =
1

8π
r2 ln r . (11)
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Figure 8: Inverse filtering with the tension filters. The left plots show the inputs
composed of filters and spikes. Inverse filtering turns filters into impulses and turns
spikes into inverse filter responses (middle plots). Adjoint filtering creates smooth
isotropic shapes (right plots). The tension parameter takes on the values 0.3, 0.7,
and 1 (from top to bottom). The case of zero tension corresponds to Figure 3.



15

The theoretical Green’s function expression for an arbitrary value of λ is unknown∗,
but we can assume that its smoothness lies between the two boundary conditions.

In the next subsection, we illustrate an application of helical inverse filtering to a
two-dimensional interpolation problem.

Regularization example

We chose an environmental dataset (Claerbout, 2002) for a simple illustration of
smooth data regularization. The data were collected on a bottom sounding survey of
the Sea of Galilee in Israel (Ben-Avraham et al., 1990). The data contain a number
of noisy, erroneous and inconsistent measurements, which present a challenge for the
traditional estimation methods (Fomel and Claerbout, 1995).

Figure 9 shows the data after a nearest-neighbor binning to a regular grid. The
data were then passed to an interpolation program to fill the empty bins. The results
(for different values of λ) are shown in Figures 10 and 11. Interpolation with the
minimum-phase Laplacian (λ = 0) creates a relatively smooth interpolation surface
but plants artificial “hills” around the edge of the sea. This effect is caused by large
gradient changes and is similar to the sidelobe effect in the one-dimensional example
(Figure 5). It is clearly seen in the cross-section plots in Figure 11. The abrupt
gradient change is a typical case of a shelf break. It is caused by a combination of
sedimentation and active rifting. Interpolation with the helix derivative (λ = 1) is free
from the sidelobe artifacts, but it also produces an undesirable non-smooth behavior
in the middle part of the image. As in the one-dimensional example, intermediate
tension allows us to achieve a compromise: smooth interpolation in the middle and
constrained behavior at the sides of the sea bottom.

CONCLUSIONS

The Wilson-Burg spectral factorization method, presented in this paper, allows one
to construct stable recursive filters. The method appears to have attractive compu-
tational properties and can be significantly more efficient than alternative spectral
factorization algorithms. It is particularly suitable for the multidimensional case,
where recursive filtering is enabled by the helix transform.

We have illustrated an application of the Wilson-Burg method for efficient smooth
data regularization. A constrained approach to smooth data regularization leads to
splines in tension. The constraint is embedded in a user-specified tension parameter.
The two boundary values of tension correspond to cubic and linear interpolation.
By applying the method of spectral factorization on a helix, we have been able to
define a family of two-dimensional minimum-phase filters, which correspond to the

∗Mitášová and Mitáš (1993) derive an analytical Green’s function for a different model of tension
splines using special functions.
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Figure 9: The Sea of Galilee
dataset after a nearest-neighbor
binning. The binned data is used
as an input for the missing data
interpolation program.

spline interpolation problem with different values of tension. We have used these
filters for accelerating data-regularization problems with smooth surfaces by recursive
preconditioning. In general, they are applicable for preconditioning acceleration in
various estimation problems with smooth models.
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