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ABSTRACT

We present a method of ray tracing that is based on a system of differential
equations equivalent to the eikonal equation, but formulated in the ray coordinate
system. We use a first-order discretization scheme that is interpreted very simply
in terms of the Huygens’ principle. The method has proved to be a robust
alternative to conventional ray tracing, while being faster and having a better
ability to penetrate the shadow zones.

INTRODUCTION

Though traveltime computation is widely used in seismic modeling and routine data
processing, attaining sufficient accuracy without compromising speed and robustness
is problematic. Moreover, there is no easy way to obtain the traveltimes corresponding
to the multiple arrivals that appear in complex velocity media.

The tradeoff between speed and accuracy becomes apparent in the choice between
the two most commonly used methods, ray tracing and numerical solutions to the
eikonal equation. Other methods reported in the literature (dynamic programming
(Moser, 1991), wavefront construction (Vinje et al., 1993), etc.) are less common in
practice (Audebert et al., 1994).

Eikonal solvers provide a relatively fast and robust method of traveltime compu-
tations (Vidale, 1990; van Trier and Symes, 1991). They also avoid the problem of
traveltime interpolation to a regular grid which imaging applications require. How-
ever, the eikonal solvers compute first-arrival traveltimes and lack the important
ability to track multiple arrivals. In complex velocity structures, the first arrival does
not necessarily correspond to the most energetic wave, and other arrivals can be cru-
cially important for accurate modeling and imaging (Geoltrain and Brac, 1993; Gray
and May, 1994).

On the other hand, one-point ray tracing can compute multiple arrivals with great
accuracy. Unfortunately, it lacks the robustness of eikonal solvers. Increasing the ac-
curacy of ray tracing in the regions of complex velocity variations raises the cost
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of the method and makes it prohibitively expensive for routine large-scale applica-
tions. Mathematically, ray tracing amounts to a numerical solution of the initial value
problem for a system of ordinary differential equations (Cerveny, 1987). These ray
equations describe characteristic lines of the eikonal partial differential equation.

Here, we propose a somewhat different approach to traveltime computation, that
is both fast and accurate, and has the ability to find multiple arrival traveltimes. The
theoretical construction is based on a system of differential equations, equivalent to
the eikonal equation, but formulated in the ray coordinate system. Unlike eikonal
solvers, our method produces the output in ray coordinates. Unlike ray tracing, it
is computed by a numerical solution of partial differential equations. We show that
the first-order discretization scheme has a remarkably simple interpretation in terms
of the Huygens’ principle and propose a Huygens wavefront tracing (from now on
referred to as HWT) scheme as a robust alternative to conventional ray tracing.
Numerical examples demonstrate the following properties of the method: stability in
media with strong and sharp lateral velocity variations, better coverage of the shadow
zones, and greater speed than paraxial ray tracing (from now on referred to as PRT).

CONTINUOUS THEORY

The eikonal equation, governing the traveltimes from a fixed source in an isotropic
heterogeneous medium, has the form

or\> or\? or\? 1
(m) *(aw) *(w) = Py 2

Here z, y, and z are spatial coordinates, 7 is the traveltime (eikonal), and v stands for
the velocity field. Constant-traveltime contours in the traveltime field 7(z,y, z), con-
strained by equation (1) and appropriate boundary conditions, correspond to wave-
fronts of the propagating wave. Additionally, each point on a wavefront can be pa-
rameterized by an arbitrarily chosen ray parameter v. In three dimensions, v includes
a pair of independent parameters. For brevity, from now on we will restrict the anal-
ysis to two dimensions. One can easily generalize it to the 3-D case by considering
and x as vector quantities. Thus, we will refer to the following two-dimensional form

of equation (1): 2 2
(g;;) " (ZZ) B U2(i’,z) ' (2)

For a point source, v can be chosen as the initial ray angle at the source. Zhang
(1993) shows that v as a function of spatial coordinates satisfies the simple partial
differential equation

dr Oy Ot Oy
0z 0w 9202
Equation (3) merely expresses the fact that in an isotropic medium, rays are locally
orthogonal to wavefronts. The field 7(z, z) has not only theoretical interest as it

0. (3)
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provides one of the possible ways for evaluating propagation amplitudes. In particular,
the geometrical spreading factor J(x, z) is connected to v by the simple relationship

(Zhang, 1993)
oy 2 0 2 1
() (%) - 7es W

It is important to note that for complex velocity fields, both 7 and ~ as functions
of x and z become multi-valued. In this case, the multi-valued character of the ray
parameter v corresponds to the situation, where more than one ray from the source
passes through a particular point {z, z} in the subsurface. This situation presents a
very difficult problem when equations (2) and (3) are solved numerically. Typically,
only the first-arrival branch of the traveltime is picked in the numerical calculation.
The ray tracing method is free from that limitation because it operates in the ray
coordinate system. Ray tracing computes the traveltime 7 and the corresponding ray
positions x and z for a fixed ray parameter 7.

Since z(7,7) and z(7, ) are uniquely defined for arbitrarily complex velocity fields,
we can now make an important mathematical transformation. Considering equations
(2) and (3) as a system and applying the general rules of calculus, we can transform
this system by substituting the inverse functions z(7,7) and z(7,~) for the original
fields 7(x, z) and y(z, z). The resultant expressions take the form

(g) " (g) — 2 (a(r,7), 2(,7)) (5)

oror 0202 _ o
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and

Comparing equations (5) and (6) with the original system (2-3) shows that equa-
tions (5) and (6) again represent the dependence of ray coordinates and Cartesian
coordinates in the form of partial differential equations. However, the solutions of
system (5-6) are better behaved and have a unique value for every 7 and v. These
values can be computed with the conventional ray tracing. However, the ray-tracing
approach is based on a system of ordinary differential equations, which represents a
different mathematical model.

We use equations (5) and (6) as the basis of our wavefront tracing algorithm. The
next section discusses the discretization of the differential equations and the physical
interpretation we have given to the scheme.

A DISCRETIZATION SCHEME AND THE HUYGENS’
PRINCIPLE

A natural first-order discretization scheme for equation (5) leads to the difference
equation

(= 8)" + (5 5)" = () "

SEP-95



Sava € Fomel 4 Huygens tracing

where the index ¢ corresponds to the ray parameter -, 7 corresponds to the traveltime
T, 7“;'. = AT vji», AT is the increment in time, and v;'» is the velocity at the {7, j} grid
point. It is easy to notice that equation (7) simply describes a sphere (or a circle
in two dimensions) with the center at {27, z/} and the radius r’. This sphere is, of

course, the wavefront of a secondary Huygens source.

This observation suggests that we apply the Huygens’ principle directly to find
an appropriate discretization for equation (6). Let us consider a family of Huygens
spheres, centered at the points along the current wavefront. Mathematically, this
family is described by an equation analogous to (7), as follows:

(& —2(7))" + (2 = 2(9)" =1r*(7) . (8)

Here the ray parameter v serves as the parameter that distinguishes a particular
Huygens source. According to the Huygens’ principle, the next wavefront corresponds
to the envelope of the wavefront family. To find the envelop condition, we can simply
differentiate both sides of equation (8) with respect to the family parameter . The
result takes the form

(z(y) =) 2'(7) + (2(7) = 2) 2'(v) = (7' (), (9)

which is clearly a semidiscrete analog of equation (6). To complete the discretization,
we can represent the y-derivatives in (9) by a centered finite-difference approximation.
This representation yields the scheme

i i itl i1 i i 1 i) i (il il
(Ij %’+1) (xj T )*(Zj Zj+1) (Zj Zj )—7‘] (73 T ) , (10)

which supplements the previously found scheme (7) for a unique determination of the
point {z%,,,2%,,} on the i-th ray and the (j 4 1)-th wavefront. Formulas (7) and (10)
define an update scheme, depicted in Figure 1. To fill the {7,~} plane, the scheme
needs to be initialized with one complete wavefront (around the wave source) and
two boundary rays.

The solution of system (7-10) has the explicit form

fo = o () )
S (Y A B Y ) Bt
where
ritt =it
S @Y e () "
(14)
and
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rays v
Figure 1: An updating scheme for A B c z
HWT. Three points on the current %
wavefront (A, B, and C) are used g
to advance in the 7 direction. b

Figure 2 shows a geometric interpretation of formulas (7) and (10). Formula (10)
is clearly a line equation. Thus, the new point D in Figure 2 is defined as one of the
two intersections of this line with the B sphere, defined by formula (7). It is easy
to show geometrically that the newly created ray segment BD is orthogonal to the
common tangent of spheres A and C'. Within the finite-difference approximation, the
common tangent reflects local wavefront behavior.

Figure 2: A geometrical updating

scheme for HWT in the physical -
domain. Three points on the cur-

rent wavefront (A, B, and C') are

used to compute the position of

the D point. The bold lines repre-

sent equations (7) and (10). The

tangent to circle B at point D is

parallel to the common tangent of

circles A and C.

IMPLEMENTATION DETAILS

There are a few problems that have to be addressed for the successful implementation
of the algorithm described in the preceding section. The most important are the
boundary values, the existence of a double solution (7-10), and the complications of
finding the solution in the vicinity of the cusp points.
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Boundary values

As mentioned in the preceding section, the application of formulas (11-12) requires
the existence of known boundary values for both the first value of 7 (next to the
wave source) and the extreme values of the take-off angle 7. Therefore, we have to
initialize the complete first wavefront as well as two boundary rays that represent
all the extreme points of each consequent wavefront (that is, for the first and last
considered take-off angle).

To initialize the points on the first wavefront, we consider that the velocity is
constant around the source, and therefore this wavefront becomes a circle centered at
the source. This is a reasonable assumption because we use a finite difference scheme
with very small time steps, and the velocity models have limited local variation.

The values of the boundary rays are externally supplied. This apparent problem
is very easy to solve by using a ray tracing program to compute the trajectories of
these two boundary rays. We can shoot several “trial” rays and select the ones that
are the smoothest and that penetrate the most into the model.

Figure 3: The double solution of
the system of equations (7-10). D
and E are the intersection points
between the circle given by equa-
tion (7) and the line given by
equation (10). Point O is the
previous point on the ray going
through B. The distance (OE) is
smaller than the distance (OD)
and, therefore, D is the next se-
lected point. The middle ray is
defined locally by the succession
of points (-O-B-D-).

The double solution

The system (7-10) has two theoretical solutions (11-12), though there is only one that
makes physical sense given a velocity map. Again, we used a geometrical argument to
select the appropriate solution. We observed that even though a wavefront can make
a sharp turn, the corresponding rays cannot (see the examples in the next section).
We define a turn as “sharp” if it happens over a very small number of samples (say,
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three). Consequently, we decided to impose the condition that the correct solution is
the one represented by the point farthest away from the preceding one on the same
ray (Figure 3).

Cusp Points

The final problem to be solved is represented by the cusp points, the case in which
the three-point scheme doesn’t provide a satisfactory solution because it tends to
decrease in an unnatural way the sharpness of the wavefronts. In this case, we reduce
the three-point scheme to a two-point one by assuming that one of the exterior points
(either A or C, Figure 4) is merged with the point in the middle (B).

Figure 4: Cusp points. A, Band C

are the three points on the current o
wavefront. Point O is the previous

point on the ray going through B.

The angle CBA is smaller than the

angle OBA, and therefore B is a &

cusp point. If the angle CBA is \

closer to 90 degrees than the an- "‘
gle OBA, then C is merged with \’

B; otherwise, A is merged with B.

The three-point scheme becomes

a two-point scheme without any
change in the program.

EXAMPLES

This section presents three examples in which we applied the method described in the
last section. The first two applications are on simple Gaussian velocity anomalies in
a medium of constant velocity. We used these models to check the validity, accuracy,
and stability of the HWT method. The third example concerns the very complex
Marmousi 2-D model, which is one of the most difficult benchmarks for ray tracing
methods. Throughout the test, we have compared our results with those obtained
with a ray tracing program for accuracy, speed, and stability.

Gaussian velocity anomalies

Our first two examples are Gaussian velocity anomalies (one positive and one neg-
ative) with a magnitude of 2.0 km/s in a constant velocity medium of 2.0 km/s for
the positive anomaly, shown in Figure 5, and of 3.0 km/s for the negative anomaly in
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Figure 6. The anomaly is centered at a depth of 1.0km and has a half-width of 300 m.
The source is placed on the surface directly above the anomaly (at x=6.0 km).

4 4.5 5 5.5 6 6.5 7 7.5

(o9]

2 2.5 3 3.5
Velocity (km/s)

o~

Figure 5: A Gaussian positive velocity anomaly. The background velocity is 2.0 km/s,
and the maximum anomaly at the center is +2.0 km/s.

We have selected these velocity models to test the way our method applies to
different patterns of velocity variation. In the case of the negative anomaly, the rays
focus inward, while in the case of the positive anomaly the rays spread outward.

The distribution of rays as obtained with the PRT and HWT methods are pre-
sented in Figure 7 for the positive anomaly, and in Figure 8 for the negative.

One way to compare the two methods is to compute the distance between the
points that correspond to the same ray, identified by the same take-off angle, at the
same traveltimes. This is obviously not a perfect quantitative comparison, because
once two rays, obtained with the two methods, become slightly divergent, they keep
going in different directions, and thus the distance between corresponding points keeps
growing (Figures 9 and 10). However, this effect is not necessarily a manifestation of
decreasing precision. It can be easily seen that if such an angular mismatch doesn’t
occur, the rays maintain practically the same path (see, for example, the rays shot
in the (-20,-40) and (20,40) degree intervals, where the distance decreases in many
cases to almost zero). Even in the case of divergent rays, the distance is kept to a
reasonable level (less than 1%). Consequently, we do not interpret these differences
as error.
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_ l
2.5 3
Velocﬂty (km/s)

Figure 6: A Gaussian negative velocity anomaly. The background velocity is
3.0 km/s, and the maximum anomaly at the center is -2.0 km/s.

Ray Tracing Wavefront Tracing

Figure 7: The rays obtained in the case of the Gaussian positive velocity anomaly.
We present the rays obtained with the PRT method (left) and with the HWT method
(right). The source is located on the surface at x=6.0 km.
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Figure 8: The rays obtained in the case of the Gaussian negative velocity anomaly.
We present the rays obtained with the PRT method (left) and with the HWT method
(right). The source is located on the surface at x=6.0 km.

Figure 9:  The distance be-
tween the corresponding points
on the rays obtained with the
PRT method and with the HWT
method. Distances are given in
meters.

Figure 10: The distance be-
tween the corresponding points
on the rays obtained with the
PRT method and with the HWT
method. Distances are given in
meters.
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The Marmousi model

In the third example, we have applied the same method to trace rays in the far
more complex Marmousi 2-D Model. Figure 11 contains the true velocity (left) and a
smoothed version using twice a tridiagonal 5 x 5 filter (right). In Figure 12 we present
the rays obtained on the unsmoothed Marmousi Model with the PRT method (left)
and with the HWT method (right). In Figure 13 we present the rays obtained on the

smoothed Marmousi Model with the PRT method (left) and with the HWT method
(right).
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Marmousi Model: True Velocity Marmousi Model: Smoothed Velocity

Figure 11: The Marmousi model. The true velocity appears on the left,the smoothed
velocity on the right.
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Figure 12: The rays obtained in the true velocity Marmousi model using the PRT
method (left) and the HWT method (right).

As expected, the rays traced using the PRT method (Figure 12, left), which
represents a more exact solution to the eikonal equation for the given velocity field,
have a very rough distribution. Since this erratic result is of no use in practice,
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Figure 13: The rays obtained in the smoothed Marmousi model using the PRT method
(left) and the HWT method (right).

regardless of its accuracy, the only way to get a proper result is to apply the ray
tracing to a smoothed velocity model (Figure 13, left).

On the other hand, the result obtained with the HW'T method looks a lot better,
though some imperfections are still visible. For the case of the unsmoothed velocity
medium, the rays have a much smoother pattern, which is less dependent on how
rough the velocity model is (Figure 12, right). This feature is preserved in the case
of the smoothed model (Figure 13, right) where the distributions of rays displayed
by the two methods are much more similar, though some differences remain (see, for
example the zone around x=6.5km, z=2.0km).

As with the Gaussian model, we present the distances between the points that
correspond to the same ray, identified by the same take-off angle, at the same travel-
times (Figure 14). This is another way to interpret what we saw in Figure 13, where
most of the rays have a consistent behavior, displaying similar paths regardless of
the method used, and therefore small distances, and a few have a different trajectory,
resulting in big distances that increase with traveltime.
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—40 —20 0 20 40

Figure 14: The distance be- o o
tween the corresponding points e
on the rays obtained with the z. =
PRT method and with the HWT — £° zc
method. Distances are given in - z
meters. S s
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CONCLUSIONS

The results obtained so far have led us to the following conclusions:

1. Stability: The HWT method is a lot more stable in rough velocity media than
the PRT method. The increased stability results from the fact that HWT
derives the points on the new wavefronts from three points on the preceding
wavefront, compared to only one in the usual PRT, which also means that a
certain degree of smoothing is already embedded in the method. This feature
allows us to use the HWT method in media of very sharp velocity variation and
still obtain results that are reasonable from a geophysical point of view.

2. Coverage: Being more stable and giving smoother rays than the PRT method,
enables the HWT method to provide a better coverage of the shadow zones.
The idea is that since the wavefront is traced from one ray to the other, it is
very easy to introduce in the code a condition to decrease the shooting angle as
soon as the wavefront length exceeds a specified upper limit.

3. Speed: Both methods were tested on an SGI 200. The execution time for
shooting 90 rays of 130 samples for each ray was 1.31s for the PRT method
and 0.22 s for the HWT method. Even though in the current implementation
of HWT we do not compute the amplitudes of the waves, our method has still
yielded a big improvement in speed for the 2-D case, which gives us hope of
doing even better in the 3-D case.

In our future work, we will implement the 3-D Huygens wavefront tracing method.
We expect to preserve its stability, while making it run even faster in comparison to
other conventional 3-D ray tracing methods.
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