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ABSTRACT

Stacking operators are widely used in seismic imaging and seismic data process-
ing. Examples include Kirchhoff datuming, migration, offset continuation, DMO,
and velocity transform. Two primary approaches exist for inverting such oper-
ators. The first approach is iterative least-squares optimization, which involves
the construction of the adjoint operator. The second approach is asymptotic
inversion, where an approximate inverse operator is constructed in the high-
frequency asymptotics. Adjoint and asymptotic inverse operators share the same
kinematic properties, but their amplitudes (weighting functions) are defined dif-
ferently. This paper describes a theory for reconciling the two approaches. I
introduce a pair of the asymptotic pseudo-unitary operators, which possess both
the property of being adjoint and the property of being asymptotically inverse.
The weighting function of the asymptotic pseudo-unitary stacking operators is
shown to be completely defined by the derivatives of the operator kinematics. I
exemplify the general theory by considering several particular examples of stack-
ing operators. Simple numerical experiments demonstrate a noticeable gain in
efficiency when the asymptotic pseudo-unitary operators are applied for precon-
ditioning iterative least-squares optimization.

INTRODUCTION

Integral (stacking) operators play an important role in seismic imaging and seismic
data processing. The most common applications are common midpoint stacking,
Kirchhoff migration, and dip moveout. Other examples include (listed in random or-
der) Kirchhoff datuming, back-projection tomography, slant stack, velocity transform,
offset continuation, and azimuth moveout. The use of the integral methods increases
in prestack three-dimensional processing because of their flexibility with respect to
irregularities in the data geometry.

An integral operator often is used to represent the forward modeling problem, and
we invert it to solve for the model. In this paper, I consider two different approaches to
inversion. The first is least-squares inversion, which requires constructing the adjoint
counterpart of the modeling operator. The second approach is asymptotic inversion,
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Fomel 2 Stacking operators

which aims at reconstructing the high-frequency (discontinuous) parts of the model.
I compare the two approaches and introduce the notion of asymptotic pseudo-unitary
operator pair that ties them together.

In practice, least squares inversion is often applied as an iterative process (Ronen
and Liner, 2000). The advantage of connecting it with the asymptotic inverse theory is
the ability to speed up the iteration. This approach was used, in the context of seismic
migration, by Jin et al. (1992) and Lambaré et al. (1992). Asymptotic pseudo-unitary
operators, introduced in this paper, provide a more universal theoretical tool. One
can use them to construct an appropriate preconditioning operator for accelerating
the convergence of the least-squares methods.

The first part of this paper contains a formal definition of a stacking operator
and reviews the theory of asymptotic inversion, following the fundamental results of
Beylkin (1985) and Goldin (1988, 1990). According to this theory, the high-frequency
asymptotic inverse of a stacking operator is also a stacking operator. To connect this
theory with the theory of adjoint operators, I show that the adjoint of a stacking
operator can also be included in the class of stacking operators. The adjoint operator
has the same summation path as the asymptotic inverse but a different weighting
function. These two results combine together to form the definition of asymptotic
pseudo-unitary integral operators. I apply such operators to define a general precon-
ditioning operator for least-squares inversion. While one can apply Beylkin’s theory
directly for constructing an appropriate asymptotic preconditioner, pseudo-unitary
operators accomplish the job in a more straightforward and computationally attrac-
tive way.

The second part of the paper addresses such examples of commonly used stack-
ing operators as wave-equation datuming, migration, velocity transform, and offset
continuation. The theory is specified for these particular applications and accompa-
nied by numerical examples. The examples demonstrate the practical advantages of
asymptotic pseudo-unitary operators.

THEORETICAL DEFINITION OF A STACKING
OPERATOR

In practice, integration of discrete data is performed by stacking. In theory, it is
convenient to represent a stacking operator in the form of a continuous integral:

S(t.) = A M (o) = [ wlait,) M(OGaity), ) do &

Q
Function M (z,x) is the input of the operator, S(¢,y) is the output, € is the sum-
mation aperture, # represents the summation path, and w stands for the weighting

function. The range of integration (the operator aperture) may also depend on ¢ and
y. Allowing x to be a two-dimensional variable, we can use definition (1) to represent
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an operator applied to three-dimensional data. Throughout this paper, I assume that
t and z belong to a one-dimensional space, and that x and y have the same number
of dimensions.

The goal of inversion is to reconstruct some function M (z,z) for a given S(t,y),
so that M is in some sense close to M in equation (1).

ASYMPTOTIC INVERSION: RECONSTRUCTING THE
DISCONTINUITIES

Mathematical analysis of the inverse problem for operator (1) shows that only in
rare cases can we obtain an analytically exact inversion. A well-known example is
the Radon transform, which has acquired a lot of different aliases in geophysical
literature: slant stack, tau-p transform, plane wave decomposition, and controlled
directional reception (CDR) transform (Gardner and Lu, 1991). In this case,

O(z;t,y) = t+ay, (2)
w(z;t,y) = 1. (3)

Radon obtained a result similar to the theoretical inversion of operator (1) with
the summation path (2) and the weighting function (3) in 1917, but his result was not
widely known until the development of computer tomography. According to Radon
(1917), the inverse operator has the form

M(z.2) = A7S(t.y) = D" [ @Sy z0).0) dy @

where
Yyizo) = z=zy, (5)
EN L ©)

|D| is a one-dimensional convolution operator with the spectrum |wl:

|mwum—%/h@w/ww@%ma (7)

and m is the dimensionality of x and y (usually 1 or 2). In Russian geophysical
literature, a similar result for the inversion of the CDR transform was published by

Nakhamkin (1969).

Extension of Radon’s result to the general form of integral operator (1) (generalized
Radon transform) is possible via asymptotic analysis of the inverse problem. In the
general case, Beylkin (1985) and Goldin (1988) have shown that asymptotic inversion
can reconstruct discontinuous parts of the model. These are the parts responsible for
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the asymptotic behavior of the model at high frequencies. Since the discontinuities are
associated with wavefronts and reflection events at seismic sections, there is a certain
correspondence between asymptotic inversion and such standard goals of seismic data
processing as kinematic equivalence and amplitude preservation.

The main theorem of asymptotic inversion can be formulated as follows (Goldin,
1988). The leading-order discontinuities in M are reconstructed by an integral oper-
ator of the form

M(z,x) = A[S(t. )] = [D|" / Dy 2,2) SOy; 2,2), ) dy ®)

where the summation path § is obtained simply by solving the equation

z=0(x;t,y) (9)

for ¢ (if such an explicit solution is possible). The correctly chosen summation path
reconstructs the geometry of the discontinuities. To recover the amplitude, we must
choose the correct weighting function, which is constrained by the equation (Beylkin,
1985; Goldin, 1988)

, (10)

where
F = —— — — (11)

N 7 920 2
o B0 _op o a2

The solution assumes that differential forms F and F exist and are bounded and
non-vanishing®. In the multi-dimensional case (m > 2), they are replaced by the
determinants of the corresponding matrices. To ensure the asymptotic inversion,
equation (10) must be satisfied at least in the vicinity of the stationary points of
integral (1). Those are the points where the summation path of the form (9) is
tangent to the traveltimes of the actual events on the transformed model. In the case
of the Radon transform, ‘F F ‘ = ’%’ = 1, and the asymptotic inverse coincides with

the exact inversion.

LEAST-SQUARES INVERSION AND ADJOINT
OPERATORS

Least-squares inversion is widely used in practice not only because it is applicable
even when the asymptotic results are unavailable but also because of its ability to

2This requirement is related to the requirement for the normal AT A operator, inroduced in the
next section, to be a pseudo-differential operator (Wong, 1991). Situations where this condition is
violated require a special consideration (Nolan and Symes, 1996; Stolk, 2000).
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handle finite sampling effects that are difficult to handle in asymptotic theory (Ronen
and Liner, 2000).

The theoretical least-squares inverse of operator (1) has the well-known form
(Tarantola, 1987)

—~

M(z,2) = A[S(t,y)] = (AT A)" AT[S(t,y)] (13)

where 1 denotes pseudo-inverse, and the adjoint operator AT is defined by the dot-

product test:
(S(t,y), A[M(z,2)]) = (AT[S(t,y)], M(2,2)) . (14)

With a specified definition of the dot-product, the generalized inverse minimizes the
following quantity, which is the squared L, norm of the residual:

(S(t,y) — A[M(z,2)], 5(t,y) — A[M(2,2)]) . (15)

In the case of integral operators, a natural definition of the dot-product is the double
integral

(S1(t.). Salt.) = [ [ Sitt.y) Sut.v)dyat. (16)
(My(z,x), My(z,x)) :/ My (z,2) My(z,x)dx dz . (17)

The notion of the adjoint operator completely depends on the arbitrarily chosen
definition of the dot product and norm in the model and data spaces. A simple way
to change those definitions is to find some positive weights Wy (z,z) in the model
space and Wy(t,y) in the data space that define the dot products as follows:

(Si(t,v), Salt, ) = / W(t,y) Si(t, ) Salt,y) dy dt . (18)

(Mi(z,2), My(z,x)) = / W (z,2) My(z,2) Ma(z,z) dx dz . (19)

To formally define the adjoint of a stacking operator, let us substitute the defini-
tion of the stacking operator (1) into the dot product (14), as follows:

(S(t,y), A /// w(z;t,y) M(0(x;t,y),z) S(t,y) de dy dt . (20)

Assuming that the function 6 is monotone in t 3, we can change the integration
variable t to z = 0(z;t,y) and rewrite equation (20) in the form

(S(t,y), A[M(z,z)]) = /// w(y; z,x) M(z, ) S(@(y; z,x),x)dydrdz (21)

3If this is not the case, a different parameterization of the stacking function is appropriate (Fomel,
2001a)
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where 6 has the same meaning as in equation (8), and

~

00

0z

~

w(y; z,x) = w(x; 0(y; 2, ), y) (22)

Comparing equations (21) and (14), we conclude that the adjoint operator AT is
defined by the equality

-~

AT[S(t,y)] = / ys 2,) S(B(y; 2. 2),y) dy . (23)

Thus we have proven that the continuous adjoint of a stacking operator is another
stacking operator. The adjoint operator has the same summation path as the asymp-
totic inverse (8), which guarantees the correct reconstruction of the kinematics of
the input wavefield. The amplitude (weighting function) of the adjoint operator is
directly proportional to the forward weighting according to equation (22). The coef-
ficient of proportionality is the Jacobian of the transformation of the variables z and
t.

Similar results have been obtained for particular cases of stacking operators: veloc-
ity transform (Thorson, 1984; Jedlicka, 1989), Kirchhoff constant-velocity migration
(Ji, 1994), and NMO (Crawley, 1995). In the appendix, I exemplify an application
of least-squares inversion by reviewing inversion of the Radon operator and showing
that it is precisely equivalent to the asymptotic result of the previous section.

ASYMPTOTIC PSEUDO-UNITARY OPERATOR PAIR

According to the theory of asymptotic inversion, briefly reviewed in the first part of
this paper, the weighting function of the asymptotically inverse operator is inversely
proportional to the weighting of the forward operator. On the other hand, the weight-
ing in the adjoint is directly proportional to the forward weighting. This difference
allows us to define a hybrid pair of operators that possess both the property of being
adjoint and the property of being asymptotic inverse. It is appropriate to call a pair of
operators defined in this way asymptotic pseudo-unitary. The definition of asymptotic
pseudo-unitary operators follows directly from the combination of definitions (8) and
(23). Splitting the derivative operator |D| in (8) into the product of two operators,
we can write the forward operator as

S(t,y) = A [M(z,2)] = / WDt y) DI MOt y), o) de (24)

and its asymptotic pseudo-unitary adjoint as

M(z,2) = A[S(t,y)] = D"/ / WOy z2) SOy 2 2).y) dy . (25)
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According to equation (10),

o0
0z

. (27)

Combining equations (26) and (27) uniquely determines both weighting functions, as
follows:

1 | g
+ - - pF -~
w = TERE FF % : (28)
~|(m+2)/4
1 ~[1/4 |00
=) = —} F‘ & 29
w L o (29)

Equations (28) and (29) complete the definition of asymptotic pseudo-unitary oper-
ator pair.

The notion of pseudo-unitary operators is directly applicable in the situations
where we can arbitrarily construct both forward and inverse operators. One example
of such a situation is the velocity transform considered in the next section of this
paper. In the more common case, the forward operator is strictly defined by the
physics of a problem. In this case, we can include asymptotic inversion in the iterative
least-squares inversion by means of preconditioning (Jin et al., 1992; Lambaré et al.,
1992). The linear preconditioning operator should transform the forward stacking-
type operator to the form (24) with the weighting function (28). Theoretically, this
form of preconditioning should lead to the fastest convergence of the iterative least-
squares inversion with respect to the high-frequency parts of the model.

If the forward pseudo-unitary operator A, can be related to the forward modeling
operator A, as A, = W, A,, W,,, where W and W,,, are weighting operators in
the data and model domains correspondingly, then preconditioning simply amounts
to replacing the least-squares equation

S~ A, [M] (30)

with the equation

W,[S] ~ W, A,, W,u[P] = A,[P] , (31)

where P is the preconditioned model. The advantage of using equation (31) is in
the the fact that the normal operator AZ A, is closer (asymptotically) to identity
and therefore should be easier to invert than the original operator AT A,, in the
least-squares solution (13).
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EXAMPLES

In this section, I consider several particular examples of stacking operators used in
seismic data processing and derive their asymptotic pseudo-unitary versions.

Datuming

Let x denote a point on the surface at which the propagating wavefield is recorded.
Let y denote a point on another surface, to which the wavefield is propagating. Then
the summation path of the stacking operator for the forward wavefield continuation
is

O(x;t,y) =t =T(z,y) , (32)
where t is the time recorded at the y-surface, and T'(z,y) is the traveltime along
the ray connecting = and y. The backward propagation reverses the sign in (32), as

follows: R
0(y; z,0) = 2+ T(z,y) . (33)

Substituting the summation path formulas (32) and (33) into the general weighting
function formulas (28) and (29), we immediately obtain

0T
Ox Oy

B 1
(2 ﬂ_)m/Q

(34)

Gritsenko’s formula (Grltsenko 1984; Goldin, 1986) states that the second mixed
traveltime derivative 8‘9 g is connected with the geometric spreading R along the z-y
ray by the equality

—-1/2

0*T
Ox Jy

V/cos a(x) cosa(y)
v(x)

where v(z) is the velocity at the point x, and a(x) and «a(y) are the angles formed
by the ray with the x and y surfaces, respectively. In a constant-velocity medium,

R(x,y) = : (35)

R(z,y) =v" " T(x,y)™" . (36)

Gritsenko’s formula (35) allows us to rewrite equation (34) in the form (Goldin, 1988)

o) _ 1 y/cosa(z) cosaly)
WD = P @ R o

WO (e ) — 1 y/cosa(z) cosaly)
(y; 2, ) G W R (38)
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The weighting functions commonly used in Kirchhoff datuming (Berryhill, 1979;
Wiggins, 1984; Goldin, 1985) are defined as

' B 1 cos a(x)
Eb) = G o) Rlay) )
1 cos a(y)

2 5
2m)™? v(y) R(y,z)

wly; z,x) = (40)

These two operators appear to be asymptotically inverse according to formula (10).
They coincide with the asymptotic pseudo-unitary operators if the velocity v is con-
stant (v(x) = v(y)), and the two datum surfaces are parallel (a(x) = a(y)).

Migration

Least-squares migration, envisioned by Lailly (1984) and Tarantola (1984), has re-
cently become a practical method and gained a lot of attention in the geophysical
literature (Nemeth et al., 1999; Chavent and Plessix, 1999; Duquet and Marfurt, 1999;
Fomel et al., 2002). Using the theory of asymptotic pseudo-unitary operators allows
us to reconcile this approach with the method of asymptotic true-amplitude migration
(Bleistein et al., 2001).

As recognized by Tygel et al. (1994), true-amplitude migration (Goldin, 1992;
Schleicher et al., 1993) is the asymptotic inversion of seismic modeling represented
by the Kirchhoff high-frequency approximation. The Kirchhoff approximation for a
reflected wave (Haddon and Buchen, 1981; Bleistein, 1984) belongs to the class of
stacking-type operators (1) with the summation path

O(x;t,y) =t =T (s(y),z) =T (z,r(y)) , (41)
the weighting function

1 C(s(y),z,r(y))
2m)"? R(s(y).z) R(z,r(y))

w(x;t,y) = (42)

and the additional time filter (%)m/ ?. Here 2 denotes a point at the reflector surface,
s is the source location, and r is the receiver location at the observation surface.
The parameter y corresponds to the configuration of observation. That is, s(y) =
s, r(y) = y for the common-shot configuration, s(y) = r(y) = y for the zero-offset
configuration, and s(y) = y — h, r(y) = y + h for the common-offset configuration
(where h is the half-offset). The functions 7" and R have the same meaning as in the
datuming example, representing the one-way traveltime and the one-way geometric
spreading, respectively. The function C(s,z,r) is known as the obliquity factor. Its

definition is
Cls, ) — 1 (cosas(:c) N cosar(m)) (43)
T 2 vs(x) v () ’
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where the angles o (z) and a,.(x) are formed by the incident and reflected waves with
the normal to the reflector at the point z, and vs(x) and v,(x) are the corresponding
velocities in the vicinity of this point. In this paper, I leave the case of converted (e.g.,
P-SV) waves outside the scope of consideration and assume that vs(z) equals v,.(z)
(e.g., in P-P reflection). In this case, it is important to notice that at the stationary
point of the Kirchhoff integral, as(z) = a,.(x) = a(z) (the law of reflection), and

therefore
cos ()

v(z)
The stationary point of the Kirchhoff integral is the point where the stacking curve
(41) is tangent to the actual reflection traveltime curve. When our goal is asymptotic
inversion, it is appropriate to use equation (44) in place of (43) to construct the
inverse operator. The weighted function (42) can include other factors affecting the
leading-order (WKBJ) ray amplitude, such as the source signature, caustics counter
(the KMAH-index), and transmission coefficient for the interfaces (Chapman and
Drummond, 1982; Cerveny, 2001). In the following analysis, I neglect these factors
for simplicity.

C(s,z,r) = (44)

The model M implied by the Kirchhoff modeling integral is the wavefield with
the wavelet shape of the incident wave and the amplitude proportional to the reflec-
tor coefficient along the reflector surface. The goal of true-amplitude migration is to
recover M from the observed seismic data. In order to obtain the image of the reflec-
tors, the reconstructed model is evaluated at the time z equal to zero. The Kirchhoff
modeling integral requires explicit definition of the reflector surface. However, its
inverse doesn’t require explicit specification of the reflector location. For each point
of the subsurface, one can find the normal to the hypothetical reflector by bisecting
the angle between the s —x and x —r rays. Born scattering approximation provides a
different physical model for the reflected waves. According to this approximation, the
recorded waves are viewed as scattered on smooth local inhomogeneities rather than
reflected from sharp reflector surfaces. The inversion of Born modeling (Miller et al.,
1987; Bleistein, 1987) closely corresponds with the result of Kirchhoff integral inver-
sion. For an unknown reflector and the correct macro-velocity model, the asymptotic
inversion reconstructs the signal located at the reflector surface with the amplitude
proportional to the reflector coefficient.

As follows from the form of the summation path (41), the integral migration
operator must have the summation path

0(y;z,2) = 2+ T (s(y),2) + T (z,r(y)) (45)
to reconstruct the geometry of the reflector at the migrated section. According to
equation (8), the asymptotic reconstruction of the wavelet requires, in addition, the
derivative filter (—%)m/ ?. The asymptotic reconstruction of the amplitude defines
the true-amplitude weighting function in accordance with equation (10), as follows:

v(@) R(s(y), @) R(x,r(y)) |OT (sy),x) 0T (z,r(y))
27m)™? cosa(x) Oz Oy dx Oy

(46)

W(y;z,x) =
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The weighting function of the asymptotic pseudo-unitary migration is found analo-
gously to equation (34) as

- 1 2T (s(y),z) T (z,r(y))|"?
(+) — ) — ) )
w w e W)m/z 9z 0y + 910y . (47)

Unlike true-amplitude migration, this type of migration operator does not change the
dimensionality of the input. Several specific cases exist for different configurations of
the input data.

1. Common-shot migration

In the case of common-shot migration, we can simplify equation (46) with the help
of Gritsenko’s formula (35) to the form

ool ) = 1 cosa(r) R(s,x) _ 1 cosa(r) R(s,x)
os(riz @) @m)™? wv(@) R@r) @mnm™? o) R(rhz)’ (48)

where the angle (r) is measured between the reflected ray and the normal to the ob-
servation surface at the reflector point r. Formula (48) coincides with the analogous
result of Keho and Beydoun (1988), derived directly from Claerbout’s imaging princi-
ple (Claerbout, 1970). An alternative derivation is given by Goldin (1987). Docherty
(1991) points out a remarkable correspondence between this formula and the classic
results of Born scattering inversion (Bleistein, 1987).

For common-shot migration, pseudo-unitary weighting coincides with the weight-
ing of datuming and corresponds to the downward continuation of the receivers.

2. Zero-offset migration

In the case of zero-offset migration, Gritsenko’s formula simplifies the true-amplitude
migration weighting function (46) to the form

2™ cosa(y)
2m)™?* v(y)

ﬁzo(y; ZJ) = (49)

In a constant-velocity medium, one can accomplish the true-amplitude zero-offset

migration by premultiplying the recorded zero-offset seismic section by the factor

(%)m_l (%)m/ ? [which corresponds at the stationary point to the geometric spreading
R(z,y)] and downward continuation according to formula (40) with the effective ve-
locity v/2 (Goldin, 1987; Hubral et al., 1991). This conclusion is in agreement with
the analogous result of Born inversion (Bleistein et al., 1985), though derived from a

different viewpoint.

In the zero-offset case, the pseudo-unitary forward operator reduces to downward
pseudo-unitary continuation with a velocity of v/2.
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3. Common-offset migration

In the case of common-offset migration in a general variable-velocity medium, the
weighting function (46) cannot be simplified to a different form, and all its components
need to be calculated explicitly by dynamic ray tracing (Cervenjf and de Castro,
1993). In the constant-velocity case, we can differentiate the explicit expression for
the summation path

é\(y; z,x) — L+ Ps(lﬂ,y) _: pr(xay) : (50)

where ps and p, are the lengths of the incident and reflected rays:

ps(y,x) = \/ﬂfg + (1 =y +h)? + (22 — Y2 + ho)? (51)

pr(y:2) = \J23+ (o= — B2+ (22— g — ha)? (52)

For simplicity, the vertical component of the midpoint y3 is set here to zero. Evaluat-
ing the second derivative term in formula (46) for the common-offset geometry leads,
after some heavy algebra, to the expression

T (s(y).x) | T (x,r(y)| _x3(p2+p}) (pst o\
Ox Oy N Ox Oy — v(pspr)? ( U Ps Pr cos () (53)

Substituting (53) into the general formula (46) yields the weighting function for the
common-offset true-amplitude constant-velocity migration:

1 as(ps+p)" (02 + 02)
(2 7T_>m/2 v (ps pr)m/2+1

Weo(y; z,v) = (54)

Equation (54) is similar to the result obtained by Sullivan and Cohen (1987). In
the case of zero offset h = 0, it reduces to equation (49). Note that the value of
m =1 in (54) corresponds to the two-dimensional (cylindric) waves recorded on the
seismic line. A special case is the 2.5-D inversion, when the waves are assumed to be
spherical, while the recording is on a line, and the medium has cylindric symmetry.
In this case, the modeling weighting function (42) transforms to (Deregowski and
Brown, 1983; Bleistein, 1986)

1 VoC(s(y),z,r(y)) (55)

w(z;t,y) = :
) @m"* Vs (ps+ 1)
and the time filter is (%)1/ ?. Combining this result with formula (53) for m =1, we

obtain the weighting function for the 2.5-D common-offset migration in a constant
velocity medium (Sullivan and Cohen, 1987):

(2 7T)1/2 \/E(ps pr)3/2
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The corresponding time filter for 2.5-D migration is (—%)1/ 2,

In the common-offset case, the pseudo-unitary weighting is defined from (47) and
(53) as follows:

1 JEscosallps+ o) I (57)
1

wio (y; 2, @) =

(27Tv)m/2 (ps pr)% ’
where -
o 2 _ h2
cosa = ((m y);p_ //))S Pr ) : (58)

Post-Stack Time Migration

An interesting example of a stacking operator is the hyperbola summation used for
time migration in the post-stack domain. In this case, the summation path is defined
as

~ (z —y)?

0y 2,0) =22+ 20 (59)

where z denotes the vertical traveltime, x and y are the horizontal coordinates on
the migrated and unmigrated sections respectively, and v stands for the effectively
constant root-mean-square velocity (Claerbout, 1995). The summation path for the
reverse transformation (demigration) is found from solving equation (59) for z. It has
the well-known elliptic form

(z —y)?
O(z;t,y) =1/ 1% — —0 (60)
The Jacobian of transforming z to t is
00| =
==z 61
0z t (61)

If the migration weighting function is defined by conventional downward continuation
(Schneider, 1978), it takes the following form, which is equivalent to equation (40):

. 1 cos a(y) 1 oS (v
: — = _ 62
w(y;Z,ZC) (27r)m/2 UR(y,I‘) (2 ﬂ_)m/Q om tm/2 ( )

The simple trigonometry of the reflected ray suggests that the cosine factor in formula
(62) is equal to the simple ratio between the vertical traveltime z and the zero-offset
reflected traveltime ¢: .

cosa = <. (63)
The equivalence of the Jacobian (61) and the cosine factor (63) has important inter-
pretations in the theory of Stolt frequency-domain migration (Stolt, 1978; Chun and
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Jacewitz, 1981; Levin, 1986). According to equation (22), the weighting function of
the adjoint operator is the ratio of (62) and (61):

1
(2 7_(_)171/2 pm tm/2 ’

w(w;t,y) = (64)

We can see that the cosine factor z/t disappears from the adjoint weighting. This
is completely analogous to the known effect of “dropping the Jacobian” in Stolt

migration (Harlan, 1983; Levin, 1994). The product of the weighting functions for
the time migration and its asymptotic inverse is defined according to formula (10) as

e (65)

Thus, the asymptotic inverse of the conventional time migration has the weighting
function determined from equations (10) and (62) as

1 t/z
(2 7_‘_)771/2 pmgm/2 "

w(wit,y) = (66)

The weighting functions of the asymptotic pseudo-unitary operators are obtained
from formulas (28) and (29). They have the form

1 t/z

CRY _

w (z;t,y) = Gy (67)
1 t

WO yz,a) = iay (68)

(2 7_{_)m/Z gy gm/2

The square roots of the cosine factor appearing in formulas (67) and (68) correspond
to the analogous terms in the pseudo-unitary Stolt migration proposed by Harlan and
Sword (1986).

Figure 1 shows the output of a simple numerical test. The synthetic zero-offset
section used in this test is shown in the left plot of Figure 2. The data are taken from
Claerbout (1995) and correspond to a synthetic reflectivity model, which contains
several dipping layers, a fault, and an unconformity. The input zero-offset section
is inverted using an iterative conjugate-gradient method and two different weighting
schemes: the uniform weighting and the asymptotic pseudo-unitary weighting (67-
68). I compare the iterative convergence by measuring the least-squares norm of the
data residual error at different iterations. Figure 1 shows that the pseudo-unitary
weighting provides a significantly faster convergence. The result of inversion after 10
conjugate-gradient iterations is shown in Figures 2 and 3. The right plot in Figure 2
shows the output of the least-squares migration. Figure 3 shows the corresponding
modeled data and the residual error. The latter is very close to zero. Although this
example has only a pedagogical value, it clearly demonstrates possible advantages of
using asymptotic pseudo-unitary operators in least-squares migration.
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Figure 1: Comparison of conver-
gence of the iterative least-squares
migration. The dashed line cor-
responds to the unweighted (uni-
formly weighted) operator. The
solid line corresponds to the
asymptotic pseudo-unitary opera-
tor. The latter provides a notice-
ably faster convergence.
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Figure 2: Input zero-offset section (left) and the corresponding least-squares image

(right) after 10 iterations of iterative inversion.
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Figure 3: The modeled zero-offset (left) and the residual error (right) plotted at the
same scale.

Velocity Transform

Velocity transform is another form of hyperbolic stacking with the summation path

O(h:to,s) = /12 + s2 h? | (69)

where h corresponds to the offset, s is the stacking slowness, and %, is the estimated
zero-offset traveltime. Hyperbolic stacking is routinely applied for scanning velocity
analysis in common-midpoint stacking. Velocity transform inversion has proved to be
a powerful tool for data interpolation and amplitude-preserving multiple suppression
(Thorson, 1984; Ji, 1995; Lumley et al., 1995).

Solving equation (69) for t;, we find that the asymptotic inverse and adjoint
operators have the elliptic summation path

O(s;t,h) = V2 — s2h?. (70)

The weighting functions of the asymptotic pseudo-unitary velocity transform are
found using formulas (28) and (29) to have the form

~|—1/4
o o1 Spalon| 1 Vshyifk
w —— |[I'F —_ . (71)
(2m)"/ Oty VTVt
~(3/4
11/4 sh/
W) - ’FF 001 _ 1 Vshyit/t (72)
2" 0| ~VE Vi
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The factor vs h for pseudo-unitary velocity transform weighting has been discovered
empirically by Claerbout (1995).

Figure 4 shows the output of a numerical test of the least-squares velocity trans-
form inversion using a CMP gather from the Mobil AVO dataset (Lumley et al.,
1995). The input CMP gather (shown in the left plot of Figure 5) is inverted us-
ing an iterative conjugate-gradient method and two different weighting scheme: the
uniform weighting and the asymptotic pseudo-unitary weights (71-72). Analogously
to Figure 1, the iterative convergence is measured by the least-squares norm of the
data residual error at different iterations. Figure 4 shows that the pseudo-unitary
weighting provides a noticeably faster convergence at the first three iterations. At
later iterations, the residual errors of the two methods are very close to each other.
The use of a pseudo-unitary weighting will be justified in this case if only three iter-
ations are practically affordable. The results of inversion after 10 conjugate-gradient
iterations are plotted in Figures 5 and 6. The right plot in Figure 5 shows the output
of the velocity transform inversion: an optimized velocity scan. Figure 6 shows the
corresponding modeled CMP gather and the residual error. The error is negligible
which indicates a successful inversion.

Iterative Convergence

Figure 4: Comparison of con-
vergence of the iterative veloc-
ity transform inversion. The
dashed line corresponds to the un-
weighted (uniformly weighted) op-
erator. The solid line corresponds
to the asymptotic pseudo-unitary
operator. The latter provides a
faster convergence at early itera-
tions.

Relative Squared Error

[teration Number

Offset Continuation and DMO

Offset continuation is the operator that transforms seismic reflection data from one
offset to another (Bolondi et al., 1982; Salvador and Savelli, 1982). If the data are
continued from half-offset h; to a larger offset hsy, the summation path of the post-
NMO integral offset continuation has the following form (Biondi and Chemingui,
1994; Stovas and Fomel, 1996; Fomel, 2001b):

t U4V
Oast.y) = 1\ =5 (73)
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Figure 5: Input CMP gather (left) and its velocity transform counterpart (right) after
10 iterations of iterative least-squares inversion.
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Figure 6: The modeled CMP gather (left) and the residual error (right) plotted at
the same scale.
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where U = h? + h3 — (v —y)?, V = /U? —4h?h2, and x and y are the midpoint
coordinates before and after the continuation. The summation path of the reverse
continuation is found from inverting (73) to be

U V
0 4
By 0) = 2ha | o = (74

The Jacobian of the time coordinate transformation in this case is simply

00

t
E Rl (75)

Differentiating summation paths (73) and (74), we can define the product of the
weighting functions according to formula (10), as follows:

ot (B -k = (a—y)*
27 V3 .

The weighting functions of the amplitude-preserving offset continuation have the form

(Fomel, 2001b)
[z h3—hi—(z—y)

N t h2 — h? —y)?

V2r Ve
It easy to verify that they satisfy relationship (76); therefore, they appear to be
asymptotically inverse to each other.

The weighting functions of the asymptotic pseudo-unitary offset continuation are
defined from formulas (28) and (29), as follows:

1/2
~—1/4 2
v (2m)"? dto ~Veon V3/2  (79)
~13/4 2 1/2
o _ L qpp|9 YN (13 = 1) = (@ =)
TN o Vo Va7 - (80)

The most important case of offset continuation is the continuation to zero offset.
This type of continuation is known as dip moveout (DMO). Setting the initial offset h4
equal to zero in the general offset continuation formulas, we deduce that the inverse
and forward DMO operators have the summation paths

Oasty) = /- (z—1), (81)

Dy
~ zh
oizw) = s (52)
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The weighting functions of the amplitude-preserving inverse and forward DMO are

z 1
w(z;ty) = \Vor By (83)

o UVE b (B (= y)?)
w(y7 9 ) \/ﬂ (h%—(x—y)2)2 3 (84)

and the weighting functions of the asymptotic pseudo-unitary DMO are

N
w®) = (@ , (85)

271' h3 — 2

{3 W )
V2 b —(z—y)?

Equations similar to (83) and (84) have been published by Stovas and Fomel (1996).
Equation (84) differs from the similar result of Black et al. (1993) by a simple time
multiplication factor. This difference corresponds to the difference in definition of
the amplitude preservation criterion. Equation (84) agrees asymptotically with the
frequency-domain Born DMO operators (Bleistein, 1990; Liner, 1991; Bleistein and
Cohen, 1995). Likewise, the stacking operator with the weighting function (83) cor-
responds to Ronen’s inverse DMO (Ronen, 1987), as discussed by Fomel (2001b). Its
adjoint, which has the weighting function

W) =

tyE 1

w(z;ty) = - hy (87)
corresponds to Hale’s DMO (Hale, 1984).
CONCLUSIONS

Stacking operators such as Kirchoff migration, datuming, dip moveout, velocity trans-
form, etc. are widely used in seismic imaging and data processing, and the need often
arises to invert them.

This paper fills the gap between the concept of asymptotically inverse operators
and the concept of adjoint operators by introducing the notion of asymptotic pseudo-
unitary stacking operators. A pair of asymptotic pseudo-unitary operators possesses
the property of being both adjoint and asymptotically inverse to each other. The
amplitude (weighting) functions of these operators are completely defined by the
derivatives of their kinematics (stacking surfaces).

The practical advantage of this unification is in the ability to construct asymptot-
ically optimal preconditioning for iterative least-squares solution of inverse problems.
Simple preliminary tests are encouraging, but further practical experience is needed
to confirm the theoretical expectations.
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APPENDIX A

LEAST-SQUARES RADON TRANSFORM INVERSION

This appendix exemplifies the application of adjoint operators by reviewing the ana-
lytical least-squares inversion of the classic Radon transform (slant stack operator).

Forming the product AT A for this case leads to the double integral

H(z,x) = A)[M(z, %’)]
= // w(y; 2z, x) é\(y,z,x),y> M (9 (f; §(y§zaf)7y> 75) dé dy =
- / M(z+y(€—x)) didy . (A-1)

Applying Fourier transform with respect to z, we can rewrite equation (A-1) in the
frequency domain as

o) = [ 31w.e) [ e ayie, (A-2)

where
H(w,z) = / H(z,z)e ™*dz, (A-3)
M(w,z) = / M(z,x)e ™*dz . (A-4)

The inner integral in equation (A-2) reduces to the m-dimensional delta function:

Alw.a) = @n)" [ 31,98 " (€~ o) de (A-5)
As follows from the properties of delta function,
- _@2mm - ~_@2mm
Aws) = 0 / M(w, )86 = a) s = 1 M) (A-6)
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Inverting (A-6) for M, we conclude that

D™

ATA) = D™ : A-7
(ATA) = T (A7)
Substituting equation (A-7) into (13) produces the result precisely equivalent to
Radon’s inversion (4).
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