t,a,p,s,g,h=var('t,a,p,s,g,h') tzo(t,a,g)=sqrt(t^2 +a^2*(1-g^2)) xzo(a,g)=a*(1-g^2) f(t,p,h)=(t + sqrt(t^2 + 4*h^2*p^2))/2 t2(t,p,g,h)=t*f(t,p,h) + (1-1/g^2)*h^2 tp(t,p,s,h)=t2(t,p,s,h)/sqrt(f(t2(t,p,s,h),p*f(t,p,h),h)) xp(t,p,g,h)=h^2*p/f(t,p,h) * (1 - f(t,p,h)^2/f(t2(t,p,g,h),p*f(t,p,h),h)) tco(t,a,g,h)=tp(tzo(t,a,g),a/tzo(t,a,g),g,h) xco(t,a,g,h)=xzo(a,g) + xp(tzo(t,a,g),a/tzo(t,a,g),g,h) def Pop(t,g): return parametric_plot([xco(t,a,g,1),g*tco(t,a,g,1)], (a,-g^2*t,g^2*t)) p = Pop(0.4,1.2)+Pop(0.8,1.2)+Pop(1.2,1.2)+Pop(1.6,1.2)+Pop(2,1.2)+Pop(2.4,1.2)+Pop(2.8,1.2)+Pop(3.2,1.2)+Pop(3.6,1.2) p.axes_range(xmin=-2.5,xmax=2.5,ymin=4.5,ymax=0) p.save(frame=True,axes=False,axes_labels=["Midpoint (km)","Pseudo-depth (km)"],fontsize=12,aspect_ratio=5/(4.5*golden_ratio),filename='junk_sage.pdf')