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ABSTRACT

Geophysical inverse problems typically involve a trade off between data misfit
and some prior. Pareto curves trace the optimal trade off between these two
competing aims. These curves are commonly used in problems with two-norm
priors where they are plotted on a log-log scale and are known as L-curves. For
other priors, such as the sparsity-promoting one norm, Pareto curves remain
relatively unexplored. We show how these curves lead to new insights into one-
norm regularization. First, we confirm the theoretical properties of smoothness
and convexity of these curves from a stylized and a geophysical example. Second,
we exploit these crucial properties to approximate the Pareto curve for a large-
scale problem. Third, we show how Pareto curves provide an objective criterion
to gauge how different one-norm solvers advance towards the solution.

INTRODUCTION

Many geophysical inverse problems are ill posed (Parker, 1994)—their solutions
are not unique or are acutely sensitive to changes in the data. To solve this kind of
problem stably, additional information must be introduced. This technique is called
regularization (see, e.g., Phillips, 1962; Tikhonov, 1963).

Specifically, when the solution of an ill-posed problem is known to be (almost)
sparse, Oldenburg et al. (1983) and others have observed that a good approximation
to the solution can be obtained by using one-norm regularization to promote sparsity.
More recently, results in information theory have breathed new life into the idea of
promoting sparsity to regularize ill-posed inverse problems. These results establish
that, under certain conditions, the sparsest solution of a (severely) underdetermined
linear system can be exactly recovered by seeking the minimum one-norm solution
(Candès et al., 2006; Donoho, 2006; Rauhut, 2007). This has led to tremendous activ-
ity in the newly established field of compressed sensing. Several new one-norm solvers
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have appeared in response (see, e.g., Daubechies et al., 2004; van den Berg and Fried-
lander, 2008, and references therein). In the context of geophysical applications, it is
a challenge to evaluate and compare these solvers against more standard approaches
such as iteratively reweighted least-squares (IRLS - Gersztenkorn et al., 1986), which
uses a quadratic approximation to the one-norm regularization function.

In this letter, we propose an approach to understand the behavior of algorithms
for solving one-norm regularized problems. The approach consists of tracking on a
graph the data misfit versus the one norm of successive iterates. The Pareto curve
traces the optimal tradeoff in the space spanned by these two axes and gives a rigorous
yardstick for measuring the quality of the solution path generated by an algorithm. In
the context of the two-norm—i.e., Tikhonov—regularization, the Pareto curve is often
plotted on a log-log scale and is called the L-curve (Lawson and Hanson, 1974). We
draw on the work of van den Berg and Friedlander (2008) who examine the theoretical
properties of the one-norm Pareto curve. Our goal is to understand the compromises
implicitly accepted when an algorithm is given a limited number of iterations.

PROBLEM STATEMENT

Consider the following underdetermined system of linear equations

y = Ax0 + n, (1)

where the n-vectors y and n represent observations and additive noise, respectively.
The n-by-N matrix A is the modeling operator that links the model x0 to the noise-
free data given by y − n. We assume that N � n and that x0 has few nonzero or
significant entries. We use the terms “model” and “observations” in a broad sense, so
that many linear geophysical problems can be cast in the form shown in equation 1.
In the case of wavefield reconstruction, for example, y is the acquired seismic data
with missing traces, A can be the restriction operator combined with the curvelet syn-
thesis operator so that x0 is the curvelet representation of the fully-sampled wavefield
(Herrmann and Hennenfent, 2008; Hennenfent and Herrmann, 2008).

Because x0 is assumed to be (almost) sparse, one can promote sparsity as a prior
via one-norm regularization to overcome the singular nature of A when estimating
x0 from y. A common approach is to solve the convex optimization problem

QPλ : min
x

1
2
‖y −Ax‖2

2 + λ‖x‖1,

which is closely related to quadratic programming (QP); the positive parameter λ is
the Lagrange multiplier, which balances the tradeoff between the two norm of the data
misfit and the one norm of the solution. Many algorithms are available for solving
QPλ, including IRLS, iterative soft thresholding (IST), introduced by Daubechies
et al. (2004), and the IST extension to include cooling (ISTc - Figueiredo and Nowak,
2003), which was tailored to geophysical applications by Herrmann and Hennenfent
(2008).
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It is generally not clear, however, how to choose the parameter λ such that the
solution of QPλ is, in some sense, optimal. A directly related optimization problem,
the basis pursuit (BP) denoise problem (Chen et al., 1998), minimizes the one norm
of the solution given a maximum misfit, and is given by

BPσ : min
x

‖x‖1 s.t. ‖y −Ax‖2 ≤ σ.

This formulation is often preferred when an estimate of the noise level σ ≥ 0 in the
data is available. BPσ can be solved using ISTc or the spectral projected-gradient
algorithm (SPG`1) introduced by van den Berg and Friedlander (2008).

For interest, a third optimization problem, connected to QPλ and BPσ, minimizes
the misfit given a maximum one norm of the solution, and is given by the LASSO
(LS) problem (Tibshirani, 1996)

LSτ : min
x

1
2
‖y −Ax‖2

2 s.t. ‖x‖1 ≤ τ.

Because an estimate of the one norm of the solution τ ≥ 0 is typically not available
for geophysical problems, this formulation is seldom used directly. It is, however, a
key internal problem used by SPG`1 in order to solve BPσ.

To understand the connection between these approaches and compare their related
solvers in different scenarios, we propose to follow Daubechies et al. (2007) and van
den Berg and Friedlander (2008) and look at the Pareto curve.

PARETO CURVE

Figure 1 gives a schematic illustration of a Pareto curve. The curve traces the
optimal tradeoff between ‖y − Ax‖2 and ‖x‖1 for a specific pair of A and y in
equation 1. Point 1© clarifies the connection between the three parameters of QPλ,
BPσ, and LSτ . The coordinates of a point on the Pareto curve are (τ, σ) and the
slope of the tangent at this point is −λ. The end points of the curve—points 2© and
3©—are two special cases. When τ = 0, the solution of LSτ is x = 0 (point 2©). It
coincides with the solutions of BPσ with σ = ‖y‖2 and QPλ with λ = ‖AHy‖∞/‖y‖2.
(The infinity norm ‖ · ‖∞ is given by max (| · |).) When σ = 0, the solution of BPσ

(point 3©) coincides with the solutions of LSτ , where τ is the one norm of the solution,
and QPλ, where λ = 0+—i.e., λ infinitely close to zero from above. These relations
are formalized as follows in van den Berg and Friedlander (2008):

Result 1. The Pareto curve i) is convex and decreasing, ii) is continuously differen-
tiable, and iii) has a negative slope λ = ‖AHr‖∞/‖r‖2 with the residual r given by
y −Ax.

For large-scale geophysical applications, it is not practical (or even feasible) to
sample the entire Pareto curve. However, its regularity, as implied by this result,
means that it is possible to obtain a good approximation to the curve with very few
interpolating points, as illustrated later in this letter.
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Figure 1: Schematic illustration of a Pareto curve. Point 1© exposes the connection
between the three parameters of QPλ, BPσ, and LSτ . Point 3© corresponds to a
solution of BPσ with σ = 0.

COMPARISON OF ONE-NORM SOLVERS

To illustrate the usefulness of the Pareto curve, we compare IST, ISTc, SPG`1,
and IRLS on a noise-free problem and compute a solution of BPσ for σ = 0, i.e.,
BP0. This case is especially challenging for solvers that attack QPλ—e.g., IST, ISTc
and IRLS—because the corresponding solution can only be attained in the limit as
λ → 0.

We construct a benchmark problem that is typically used in the compressed sens-
ing literature (Donoho et al., 2006). The matrix A is taken to have Gaussian indepen-
dent and identically-distributed entries; a sparse solution x0 is randomly generated,
and the “observations” y are computed according to equation 1.

Solution paths

Figure 2 shows the solution paths of the four solvers as they converge to the
BP0 solution. The starting vector provided to each solver is the zero vector, and
hence the paths start at (0, ‖y‖2)—point 2© in Figure 1. The number of iterations
is large enough for each solver to converge, and therefore the solution paths end at
(τ

BP0
, 0)—point 3© in Figure 1.
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Figure 2: Pareto curve and solution paths (large enough number of iterations) of four
solvers for a BP0 problem. The symbols + represent a sampling of the Pareto curve.
The solid (—) line, obscured by the Pareto curve, is the solution path of ISTc, the
chain (– · –) line the path of SPGL`1, the dashed (– –) line the path of IST, and the
dotted (· · · ) line the path of IRLS.
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The two solvers SPG`1 and ISTc approach the BP0 solution from the left and
remain close to the Pareto curve. In contrast, IST and IRLS aim at a least-squares
solution before turning back towards the BP0 solution. ISTc solves QPλ for a de-
creasing sequence λi → 0. The starting vector for QPλi

is the solution of QPλi−1
,

which is by definition on the Pareto curve. This explains why ISTc so closely follows
the curve. SPG`1 solves a sequence of LSτ problems for an increasing sequence of
τi → τ

BP0
, hence the vertical segments along the SPG`1 solution path. IST solves

QP0+ . Because there is hardly any regularization, IST first works towards minimizing
the data misfit. When the data misfit is sufficiently small, the effect of the one-norm
penalization starts, yielding a change of direction towards the BP0 solution. IRLS
solves a sequence of weighted, damped, least-squares problems. Because the weights
are initialized to ones, IRLS first reaches the standard least-squares solution. The
estimates obtained from the subsequent reweightings have a smaller one norm while
maintaining the residual (close) to zero. Eventually, IRLS gets to the BP0 solution.

Practical considerations

In geophysical applications, problem sizes are large and there is a severe com-
putational constraint. We can use the technique outlined above to understand the
robustness of a given solver that is limited by a maximum number of iterations or
matrix-vector products that can be performed.

Figure 3 shows the Pareto curve and the solution paths of the various solvers
where the maximum number of iterations is fixed. This roughly equates to using the
same number of matrix-vector products for each solver. Whereas SPG`1 continues to
provide a fairly accurate approximation to the BP0 solution, those computed by IST,
ISTc, and IRLS suffer from larger errors. IST stops before the effect of the one-norm
regularization kicks in; hence the data misfit at the candidate solution is small but the
one norm is completely incorrect. ISTc and IRLS accumulate small errors along their
paths because there are not enough iterations to solve each subproblem to sufficient
accuracy. Note that both solvers accumulate errors along both axes.

GEOPHYSICAL EXAMPLE

As a concrete example of the use of the Pareto curve in the geophysical context,
we study the problem of wavefield reconstruction with sparsity-promoting inversion
in the curvelet domain (CRSI - Herrmann and Hennenfent, 2008). The simulated
acquired data, shown in Figure 4(a), corresponds to a shot record with 35% of the
traces missing. The interpolated result, shown in Figure 4(b), is obtained by solving
BP0 using SPG`1. This problem has more than half a million unknowns and forty-two
thousand data points.

The points in Figure 5 are samples of the corresponding Pareto curve. The regu-
larity of these points strongly indicates that the underlying curve—which we know to
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Figure 3: Pareto curve and optimization paths (same, limited number of iterations)
of four solvers for a BP0 problem (see Figure 2 for legend).
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be convex—is smooth and well behaved, and empirically supports our earlier claim.
However problems of practical interest are often significantly larger, and it may be
prohibitively expensive to compute a similarly fine sampling of the curve.

Because the curve is well behaved, we can leverage its smoothness and use a small
set of samples to obtain a good interpolation. The solid line in Figure 5 shows an
interpolation based only on information from the circled samples. The interpolated
curve closely matches the samples that were not included in the interpolation. The
figure also plots the iterates taken by SPG`1 in order to obtain the reconstruction
shown in Figure 4(b). The plot shows that the iterates remain to the Pareto curve
and that they convergence towards the BP0 solution.

(a) (b)

Figure 4: CRSI on synthetic data. (a) Input and (b) interpolated data using CRSI
with SPG`1.

CONCLUSIONS

The sheer size of seismic problems makes it a certainty that there will be signif-
icant constraints on the amount of computation that can be done when solving an
inverse problem. Hence it is especially important to explore the nature of a solver’s
iterations in order to make an informed decision on how to best truncate the solution
process. The Pareto curve serves as the optimal reference, which makes an unbiased
comparison between different one-norm solvers possible.

Of course, in practice it is prohibitively expensive to compute the entire Pareto
curve exactly. We observe, however, that the Pareto curves for many of the one-norm
regularized problems are regular, as confirmed by the theoretical Result 1. This
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Figure 5: Pareto curve and SPG`1 solution path for a CRSI problem. The symbols
+ represent a fine, accurate sampling of the Pareto curve. The solid (—) line is an
approximation to the Pareto curve using the few, circled points, the chain (– · –) line
the solution path of SPG`1.
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suggests that it is possible to approximate the Pareto curve by fitting a curve to a
small set of sample points, taking into account derivative information at these points.
As such, the insights from the Pareto curve can be leveraged to large-scale one-norm
regularized problems, as we illustrate on a geophysical example. This prospect is
particularly exciting given the current resurgence of this type of regularization in
many different areas of research.
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