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ABSTRACT

Traveltime calculations amount to solving the nonlinear eikonal equation for a
given source location. We analyze the relationship between the eikonal solution
and its perturbations with respect to the source location and develop a partial
differential equation that relates the traveltime field for one source location to
that for a nearby source. This linear first-order equation in one form depends on
lateral changes in velocity and in another form is independent of the velocity field
and relies on second-order derivatives of the original traveltime field. For stable
finite-difference calculations, this requires the velocity field to be smooth in a
sense similar to ray-tracing requirements. Our formulation for traveltime pertur-
bation formulation has several potential applications, such that fast traveltime
calculation by source-location perturbation, velocity-independent interpolation
including datuming, and velocity estimation. Additionally, higher-order expan-
sions provide parameters necessary for Gaussian-beam computations.

INTRODUCTION

The traveltime field is typically used to describe the phase behavior of the Green’s
function, a key tool for Kirchhoff modeling and migration. It also is used at the
heart of many velocity estimation applications, such as reflection tomography. The
traveltime field for a fixed source in a heterogeneous medium is governed by the
eikonal equation, derived about 150 years ago by Sir William Rowan Hamilton. Since
early 1990s, a direct numerical solution of the eikonal equation has been a popular
method of computing traveltimes on regular grids, commonly used in seismic imaging
(Vidale, 1988, 1990; van Trier and Symes, 1991; Podvin and Lecomte, 1991). Modern
methods of traveltime computation include the fast marching method, developed by
Sethian (1996) in the general context of level set methods for propagating interfaces.
Sethian and Popovici (1999) and Popovici and Sethian (2002) report a successful
application of this method in three-dimensional seismic computations. Alkhalifah
and Fomel (2001) improved its accuracy using spherical coordinates. Alternative
methods include group fast marching (Kim, 2002), fast sweeping (Zhao, 2005), and
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paraxial marching (Qian and Symes, 2002). Several alternative schemes are reviewed
by Kim (2002).

The nonlinear nature of the eikonal partial differential equation was addressed by
Aldridge (1994), who linearized the eikonal equation with respect to velocity pertur-
bation, while retaining its first-order nature. Alkhalifah (2002) developed a similar
linearization formula for perturbations in anisotropic parameters and solved it nu-
merically using the fast marching method. The linear feature increased the efficiency
and stability of the numerical solution, especially in the anisotropic case.

A major drawback of using conventional methods to solve the eikonal equation nu-
merically is that we only evaluate the fastest arrival solution, not necessarily the most
energetic one. This results in less than acceptable traveltime computation for imag-
ing in complex media (Geoltrain and Brac, 1993). Eikonal solvers can be extended
to image multiple arrivals through semi-recursive Kirchhoff migration (Beve, 1997),
phase-space equations (Fomel and Sethian, 2002), or slowness matching (Symes and
Qian, 2003) techniques. The linearization also helps to avoid the first-arrival only
limitation, especially when the background traveltime field includes energetic arrivals.

The dependence of the traveltime field on the source location can be empirically
evaluated by comparing the shape of the traveltime fields for two different sources
when the sources are superimposed on each other. For a medium with no lateral ve-
locity variation, the traveltime field should be source-location independent. Relating
the two traveltime fields directly through an equation can provide insights into the
dependence of traveltime fields on lateral velocity variations. Such information can
serve in developing better traveltime interpolation and velocity estimation.

In this paper, we develop a new eikonal-based partial differential equation that
relates traveltime shape changes to changes in the source location. The changes can
be described first- or second-order accurate terms and thus used in a Taylor’s type
expansion to find the traveltime for a nearby source. We test the accuracy of the
approximation analytically and numerically through the use of complex synthetic
models. In the discussion section, we suggest possible applications for the new
equation.

SHIFT IN THE SOURCE LOCATION

The eikonal equation appears in the zeroth-order asymptotic expansion of the so-
lution of the wave equation given by the Wentzel, Kramers, and Brillouin (WKB)
approximation. It represents the geometrical optics term that contains the most
rapidly varying component of the leading behavior of the expansion. In a medium
with sloth (slowness squared), w, the traveltime 7 for a wavefield emanating from a
source satisfies the following formula:
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where (x,y, z) are the components of the 3-D medium. At the location of the source
(x5, Ys, 25 ), the initial value of time 7(zs, ys, 2zs) = 0 is needed for numerically solving
the eikonal equation 1. Moving the source along the z-axis a distance [ is equivalent
to solving the following eikonal equation:

or\’ or\’ o\’
<0x> +((3y> +<8z> =w(x —1,y,2), (2)

for the same source location. In other words, we are replacing a shift in the source
location with an equal distance shift in the velocity field in the opposite direction.
Figure 1 shows the operation for a single source and image point combination taking
into account the reciprocity principle between sources and receivers.

position

Figure 1: Illustration of the re—§
lation between the initial source !
location and a perturbed version !
given by a single source and im-
age point locations. This is equiv- !
alent to a shift in the velocity field !
laterally by dl. |
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Assuming that the sloth (or velocity) field is continuous in the = direction, we
differentiate equation 2 with respect to [ and get:

2 2 2
287’ 0T 287 0T 287 0T ow

— — — =——. 3
0z 00l T “0y oyol T "0z 0201 0 )
Substituting the change in traveltime field shape due to source perturbation, D, = %,
into equation 3 provides a first order linear equation in D, given by:
or 0D, or 0D, or 0D, ow
2— 2— 2— =——". 4
Or Ox + dy 0Oy + 0z 0z ox (4)

Solving for D, requires the velocity (sloth) field as well as the traveltime field 7 for a
source located at the surface at [y. Thus,the traveltime field for a source at [ can be
approximated by

t(I,y,Z) %T(x,y,z)—i—Dx(x,y,z)(l—lO). (5>
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Equation 4 is velocity dependent, which limits its use for inversion purposes.
However, a differentiation of Equation 2 with respect to x produces

GOr O Or &1 01 O dw (6)
Ox Ox? dy 0z0dy 0z 00z Oz’

Adding equations 3 and 6 yields equation

or 0*r  or *r Or O*r or 0°r  Or 0°r or 0*r
—m et m e e = Ayt + 2 (7)
Oxr 0x0l Oy Oydl ~ 0z 0z0l  Ox Ox* Oy 0xdy 0z 0xdz

which is velocity independent. Substituting again the change in traveltime with source

location D, = % into equation 7 yields

or oD, O0r 0D, Or 0D, Or 0*t Or O*r or 0*r
SAR et R Ak AR et R R AL o (8)
Jdr dxr 0Oy Oy 0z 0z Ox 0x? Oy Oxdy 0z 0x0z

which is a first order linear partial differential equation in D, with D,=0 at the source.
The traveltime derivatives are computed for a given traveltime field 7 corresponding
to a source location [y. Equation 8 can be represented in a vector notation as follows:

Vr-VD, = Vr- vg;. (9)

A similar treatment for a change of the source location in y or z yields the following
equations, respectively:

or oD, 0rdD, 0rdD, Or Ot Ot &r Ot O’

“r ] arr I 1
Or Ox + dy Oy + 0z 0z Ox 0xdy + dy Oy? + 0z Oyoz’ (10)
or 5
-
Vr-VD, = VT-Va—y. (11)
and
or 0D, Or 0D, Ot 0D, Or O0°*r or 0t or 0t
— i = +0 + - (12)
or Ox Jy Oy 0z 0z Oxr Ox0z Oy dydz 0z 022
or 5
-
.VD. = -V —. 1
V1.-VD, = V71 v@z (13)

The above set of equations provides a tool for calculating first-order traveltime deriva-
tives with respect to the source location. However, a condition for stability is that
the velocity field must be continuous. This condition is analogous to conditions used
in ray tracing methods and can be enforced using smoothing techniques. Another
approach to handle this limitation is discussed later.
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A LINEAR VELOCITY MODEL EXAMPLE

As a first test to our formulations, we consider a 2-D model where the velocity changes
linearly in the direction of the source perturbation. In this case, the traveltime is
described analytically as a function of x and z and so will the traveltime changes,
D,. Restricting this example to models with change of velocity in the direction of
the source perturbation does not limit its generality since changes in the orthogonal
direction has no direct influence on the traveltime field.

In the first example, we consider a source perturbation in the vertical direction in

a medium in which the velocity changes linearly in the vertical direction. Consider-

ing source perturbation in the vertical direction is useful for applications related to

datuming and possibly downward continuation. The linear velocity model is defined
by

v(2) = vy + az. (14)

where a is the vertical velocity gradient and vy is velocity at the surface z = 0. The
traveltime from a source at * = z = 0 to a point in the subsurface given by = and z
is provided by Slotnick (1959), as follows:

2.2 (2?2
1 a‘z° (% +1
7(z,2) = = cosh™! ((z) + 1) . (15)

a 20 (az + o)

Evaluating 37 and g—; and using equation 4 yields:

a?(z2+422
D _ (CLZ + 27)0) 4a2:r:24£(a:_+21)10)2 (16)
= v (az + vy) ’

which is an analytical representation of the change in the traveltime field shape with
source depth location for this specific linear model and can be used to predict the
traveltime for a source at a different depth. To test equation 16, we use equation 15 to
estimate the traveltime using expansion 5 and compare that with the true traveltime
for that source. Figure 2 shows this difference for a model with (a) a vertical velocity
gradient of 0.5 s™' and (b) a vertical velocity gradient of 0.7 s7!. A 200 meter vertical
shift, used here for the source, is typical of corrections applied in datuming among
other applications. The errors, as expected, increase with an increase in velocity
gradient as zero velocity gradient results in no change in traveltime shape and thus no
errors. However, the errors are generally small for both gradients with the maximum
value of 0.007 s occurring for the largest offset to depth ratio.

In the second example, we consider source perturbation laterally in a medium
in which the velocity changes linearly in the lateral direction. Considering source
perturbation in the lateral direction could be useful for velocity estimation, beam
based imaging, and interpolation applications, and more inline with the objectives of
this study. In this case, the linear velocity model is defined by

v(z) = v + ax. (17)
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Figure 2: A color contour plot of the traveltime errors using the perturbation equation
as a function of location (z, z) for a linear velocity model of with v4=2000 m/s and
a vertical velocity gradient of 0.5s57! for (a) and 0.7s7! for (b). In both cases, the
vertical source perturbation distance is 200 meters. The maximum traveltime errors
are (a) 0.004 s and (b) 0.007 s.

where a is now the lateral velocity gradient and vy is velocity at the vertical line x = 0.
The traveltime and D, are given by formulations similar to equations 15 and 16, but
with an orthogonal transformation of coordinates. Though the equations are similar,
we want to get an estimate of the error distribution for this problem. Figure 3 shows
the traveltime errors for using these new formula to predict the changes due to shifts
in the source location by (a) 100 meters and (b) 200 meters. As expected, the errors
increase with the amount of shift. However, in both cases the errors are generally
small and bounded by 0.002 s.

HIGHER-ORDER ACCURACY

The accuracy of the above formulations are first order in source perturbation, which
is valid for small perturbation distances. To obtain a higher-order accuracy, we dif-
ferentiate equation 3 again with respect to [ yielding:

o (PN G0 P (PN 0r & (PN o o o
0x0l Ox 0x0l? dyol dy 0yol? 0z0l

T B0 0ar
(18)

Substituting the second derivative of traveltime with respect to source location

D,, = % into equation 18 provides us with a first order linear partial differential
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Figure 3: A color contour plot of the traveltime errors using the perturbation equation
as a function of location (z, z) for a linear velocity model of with v4=2000 m/s and
a horizontal velocity gradient of 0.5s7! for (a) a horizontal source perturbation of
100 meters and (b) a horizontal source perturbation distance of 200 meters. The
maximum traveltime errors are (a) 0.0005 s and (b) 0.002 s.

equation in D,, given by:

2 2 2 2
5 <6D$> +267 0D, P <8D$> +2@ 0D, 5 <6D$> +237‘ 0Dy 0w

Ox Ox Ox oy oy Oy 0z 0z 0z  Ox?
(19)
or L 92
w
VD, VD, + V5 VD, = S0 (20)

This equation is similar in form to the first order equations, but with a different source
function. Of course, D, must be evaluated first using equation 4 to solve equation 20.

Based on Taylor’s series expansion, the traveltime for a source at [ is approximated
by

1
t(x>y7 Z) ~ T(x>y7 Z) + Dw(xvyv Z)(l - ZO) + éDxx(£7y7 Z)(l - lO)Q' (21)

Using an infinite series representation by defining poles to eliminate the most
pronounced transient behavior using Shanks transforms (Bender and Orszag, 1978),
we can represent the second order Taylor’s expansion in equation 21 as follows

DwZ(x7y>Z)(l _ lO)
Dm(x7y> Z)(l - lO) + %Dzm(xa Y, Z)(l - l0)27

tzx,y,z) =~ 7(x,y,2) + (22)

which can provide a better approximation results in some regions but has an obvious
singularity that might cause divergence when the denominator tends to zero.
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Similar equations for expansions in 3-D are obtained with the help of the following

matrix
0%t o927 o%r

D,y Dy Dy, 12 Bll, Olgl,
D D D . 02T 02T 02T 23
zy vy v2 | = | o, ez al | (23)
sz Dyz -Dzz 9%t 92T 9%t

Oyl Olyl, 02
with components obtainable using similar first order partial differential equations
shown in Appendix A, where [,, [,,, and [, describe source perturbations in the z, vy,
and z directions, respectively. These equations can form the basis for beam expansions
in beam-type migrations.

The higher-order equations provide better approximations of the traveltime per-
turbation. However, they require both the velocity and its derivative to be continuous
in the direction of the source perturbation.

ALGORITHM

All the traveltime source perturbation equations developed above are linear first or-
der partial differential equations that can be solved using any of the many upwind
numerical methods. Similar to Franklin and Harris (2001) and Alkhalifah (2002), we
will rely on the fast marching method Sethian (1996) to solve such linear equations.

An update procedure for such a method is based on an upwind first or second-
order approximation to the new equations. In simple terms, the procedure starts
with selecting one or more (up to three) neighboring points around the updated
point. The traveltime values at the selected neighboring points need to be smaller
than the current value. After the selection, one solves the discrete version of the
linear partial differential equation for D,. We add this perturbation value multiplied
by the perturbation distance to the background traveltime. As the result of the
updating, either a FarAway point is marked as NarrowBand or a NarrowBand point
gets assigned a new value. This process is repeated until we run out of points in the
narrow band.

In all cases, we will need the traveltime field for a given source obtained using the
eikonal equation or ray-based methods. This traveltime field serves as the background
field for predicting the traveltime for other sources. For the first-order accuracy ex-
pansion, we have to only solve the linear source differential eikonal partial differential
equation once. However, for the second order expansion or its shank transform rep-
resentation, we will need D,,, and thus need to solve an equivalent linear differential
equation again.

The critical part of solving these equations is the need to evaluate the first and
second order derivatives of the velocity field or equivalently the second- and third-
order derivatives of the background traveltime field all with respect to the direction
in which the source is perturbed. This poses a challenge in media where the velocity
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changes abruptly in that direction. Therefore, some smoothing may be required for
the velocity field in the source perturbation direction.

EXAMPLES
Lens example

Since the differential equation depends on velocity changes in the direction of the
source shift, we test the methodology on a model that contains a lens anomaly in an
otherwise constant velocity gradient (Z—Z = 0.55"! and % = 0.7s7! with velocity at
the origin equal to 2 km/s) model. The lens is located at 600 meters laterally and
500 meters depth with a velocity perturbation of +500 m/s (or 20%). The lens has a
diameter of 200 meters and causes a large velocity variation. Using this model, we test
the accuracy of the first-order, second-order, and the Shanks-transform representation

equations.

For a source located at 200 meters lateral distance from origin and 200 meter
depth, we solve the eikonal equation using the fast marching method with second
order accuracy. The traveltime field in this case is represented by the solid contours
on the left side plots of Figures 4, 5, and 6. We also solve the eikonal equation
for source located virtually 100 meters away in lateral direction and it is represented
by the solid curves in the middle plot of the three Figures. Solving for D, using
equation 3 and using that along with the original traveltime field, we obtain an
approximate traveltime field for a source 100 meters away. This new traveltime field
is represented by the dashed contour curves in Figure 4. The absolute difference
between the simulated traveltime and the true one both displayed in the center plot
is given by the density plot shown on the right side of Figure 4.

The errors are generally small (less than 0.008 s), with the largest of errors ap-
pearing on the lower side of the lens. This error is generally small considering the
large shift (100 meters) and first-order nature of the expansion. In addition, errors
for the rest of the traveltime field corresponding to the linear variation in velocity is
extremely small.

Figure 5 is similar to Figure 4, but now we use the second-order expansion, which
requires solving the linear partial differential equation twice. Overall, as expected,
the errors are less than the first order case with clear reduction in the upper side trail
of the lens.

With hardly any additional computational cost, we can use the Shank transform
representation of the expansion and in this case the errors, as shown in Figure 6, are
reduced even further.

To emphasize the role of the perturbation terms in approximating the source-
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Figure 4: The traveltime contour (solid curve) plot for a source at lateral and depth
position of 0.2 km (left) and for a source virtually perturbed by 100 meters in the
lateral direction (middle), both compared with the traveltime derived using the first-
order accuracy perturbation eikonal for a 100 meters virtual shift (dashed curves). In
both plots the velocity field is shown in the background. Also shown on the right is
a density plot of the difference between the two contours in the middle plot.
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Figure 5: The traveltime contour (solid curve) plot for the original source (left) and
for a source virtually perturbed by 100 meters in the lateral (middle), both compared
with the traveltime derived using the second-order accuracy perturbation eikonal for
a 100 meters virtual shift (dashed curves). In both plots the velocity field is shown in

the background. Also shown on the right is a density plot of the difference between
the two contours in the middle plot.
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Figure 6: The traveltime contour (solid curve) plot for the original source (left) and
for a source virtually perturbed by 100 meters (middle), both compared with the
traveltime derived using Shanks transform perturbation eikonal for a 100 meters vir-
tual shift (dashed curves). In both plots the velocity field is shown in the background.

Also shown on the right is a density plot of the difference between the two contours
in the middle plot.
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Figure 7: A density plot of the traveltime error in percent for the difference plots
in Figures 4-6 (right), plotted from left to right, respectively. The percent error is

measured in a relative manner where 0 corresponds to the accurate traveltime and
100% to the unperturbed traveltime.
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shifted traveltime, we define a relative percent error as

torr = 100—— 2 (24)

1 — 7o

where 7y is the unperturbed traveltime for the original source, 7 is the traveltime for
the desired source calculated directly using the conventional eikonal equation, and 7
is the traveltime estimated using the perturbation equations for the desired source.
If 7 is equal to 7, as desired, the error is zero. However, if 7 equals the unperturbed
traveltime 7y the error is 100 percent. Figure 7 shows this relative errors for the first-
order accuracy perturbation (left), the second-order accuracy perturbation (middle),
and using Shanks transform perturbation (right) for the linear model with a lens.
The errors are overall less for the Shanks transform perturbation. The large error
at position and depth equal to 0.2 km corresponds to the source location, where the
denominator of equation 24 tends to zero.

Marmousi example

Despite the fact that the source perturbation differential equations are dependent on
the derivative of velocity, and thus, discontinuous velocity fields pose a problem, we
test the method on the unsmoothed Marmousi model (Versteeg, 1994) to asses the
stability of the numerical process. In this case, we use only the first order expansion to
avoid relying on higher order derivatives of the velocity field, which might breakdown
here.

Figure 8 shows the Marmousi model in the background with the traveltime field
contours computed directly using the finite difference eikonal equation for a source
located at 4.2 km at the surface (dashed curves) compared with the traveltime field
perturbed from a source located 200 meters away at 4 km surface location. The
two contour curves overlap near the source, but show some difference away from
the source. However, the difference is generally small considering the large source
perturbation of 200 meters and the velocity complex model.

A closer and more quantitative look is given by the difference plot; Figure 9 shows
a density plot for the difference in traveltime contours in Figure 8. With a clip of 0.01
seconds, errors given in gray are small and dominate the plot. This is a testament to
the stability of the Fast marching implementation despite the complex velocity field
that includes many lateral discontinuities.

DISCUSSION

Seismic data are usually acquired with geophone layouts that record information from
multiple source locations. The redundancy in the coverage is necessary to eliminate
gaps in the data, estimate velocity, and image the data. Thus, the direct relation
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Position (km)

Figure 8: The traveltime contour plot for a source at the surface at 4.2 km (dashed
curves) and for a source virtually perturbed by 200 meters from the traveltime field
at 4 km source surface location (solid curves). The perturbed traveltime is derived
using the first-order accuracy perturbation eikonal. The Marmousi velocity field is
shown in the background.

Figure 9: A density plot for the difference between the two contours shown in Figure 8.
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between the traveltime field and the source location allows us to estimate attributes
that can help in interpolation, velocity estimation and possibly imaging. Specifically:

e Traveltime compression schemes (Alkhalifah, 2010) require the ability to inter-
polate subsampled traveltimes.

e One of the main sources of trace interpolation information is the behavior of
wavefronts with respect to the source location.

e Velocity estimation relies directly on the change in traces as a function of source
and receiver locations.

e Kirchhoff antialiasing schemes (Lumley et al., 1994; Abma et al., 1999) explicitly
require the derivatives of the traveltime with respect to the source and receiver
locations on the surface.

e Gaussian-beam migration (Hill, 1990, 2001; Alkhalifah, 1995; Gray, 2005) relies
on traveltime derivative information as a function of ray angle variations and
source variations, which is usually obtained from the slower and less stable
dynamic ray tracing.

e Efficient traveltime calculation can be achieved using first order linear equations
instead of the nonlinear form of the eikonal equation.

However, the formulation developed here has limitations. Chief among them is
the need to evaluate derivatives of velocity and traveltime fields. Since velocities may
include discontinuities, their derivatives are not easy to evaluate. However, similar to
the ray-based methods, one can simply smooth the velocity field.

Since traveltime fields that contain all arrivals satisfy the eikonal equation, the
source perturbation can be applied to traveltimes extracted from other methods, such
as ray tracing or escape equations. Therefore, they can include most energetic arrivals
as opposed to first-arrival traveltimes.

CONCLUSIONS

The behavior of the traveltime field shape as a function of source location in an in-
homogeneous medium provides a platform for many useful applications. We present
eikonal-based equations that relate traveltime field changes with respect to the source
perturbations. These equations are linear first-order differential equations that de-
pend on the background traveltime and velocity fields. Their solutions describe the
first- and second-order changes in the traveltime field as a function of the source lo-
cation. These equations are equivalent to the plane wave expansion extracted from
dynamic ray tracing, such as the one used for Gaussian-beam migration. They can
be solved efficiently by finite-difference solvers on a regular grid. The solutions are
used to estimate the traveltime shape for neighboring sources. The accuracy of the
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equations depends on the complexity of lateral velocity variations as well as on the
source perturbation distance.
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APPENDIX A: HIGHER-ORDER EXPANSIONS

Traveltime behavior due to source perturbations can be estimated more accurately
using higher-order formulations. Considering that [, [,, and [, represent source
perturbations in the z, y, and z directions, respectively, a full representation of the
second derivative behavior is given by the following symmetric matrix

%1 92T 92T
D,y Dyy Dy, 12 Bll, Olgl,
D D D _ 9*r Pr 9 ( A 1)
zy vy vz | = | O, a2 al |- -
sz Dyz -Dzz T T T

lgl, Olyl, 212

D, is evaluated using the first order linear differential equation 20, where 7 is ob-
tained from solving the eikonal equation and D, is evaluated from equation 4.

Similarly, higher order approximations in [/, and [, are given by

10%w

VDy . VDy + VT'VDyy = 587:[/2
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and
1 9%w

2022’
respectively, which represent the diagonal terms of the matrix in equation A-1.

VD.-VD. + Vr-VD,, = (A-3)

To obtain the non-diagonal components of the matrix we differentiate equation 3
with respect to [, instead of [,, yielding:

0t O*r or Ot O*r O*r or  Or
2 +o2 49 R AR
0x0l, ) \ 0x0l, Oz 0z0l,0l, oyol, ) \ 0ydl, Oy 0yol,0l,
O*r O*r or Ot O*w
2 25" =~ (A4
(azaz) <azazy> 252 golan, ~ awoy Y

Substituting the second derivative of traveltime with respect to source location

9% . . . . . .
D,, = Lo, into equation A-4 provides us with a first order linear equation in D,

given by:
oD oD or 0D oD oD or 0D
2 ) () 4o Ty o[ ) (22 ) 4o T
<8x><8x>+8x 8x+<8y><8y>+8y 8y+

2
() (P2 a2 P

0z 0z 0z 0z  0xz0y
o 102
w
D,-VD VD, = = ) A-
VD, -VD, + V1-VD,, 5920y (A-6)
Similar equations for the rest of the matrix components are given by
1 J%w
. . - 7 A-
VD, VD, + V7:-VDp. = 5o (A-T)
and |
VD, VD, + V7-VD,, = -~ —— (A-8)

20ydz’



