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ABSTRACT

Simultaneous seismic data denoising and reconstruction is a currently popular re-
search subject in modern reflection seismology. Traditional rank-reduction based
3D seismic data denoising and reconstruction algorithm will cause strong residual
noise in the reconstructed data and thus affect the following processing and inter-
pretation tasks. In this paper, we propose an improved rank reduction method
by modifying the truncated singular value decomposition (TSVD) formula used
in the traditional method. The proposed approach can help us obtain nearly
perfect reconstruction performance even in the case of low signal-to-noise ratio
(SNR). The proposed algorithm is tested via one synthetic and field data exam-
ples. Considering that seismic data interpolation and denoising source packages
are seldom in the public domain, we also provide a program template for the
rank reduction based simultaneous denoising and reconstruction algorithm by
providing an open-source Matlab package.

INTRODUCTION

Seismic data interpolation plays a fundamental role in seismic data processing, which
provides the regularly sampled seismic data for the following workflows like high-
resolution processing, wave-equation migration, multiple suppression, amplitude-versus-
offset (AVO) or amplitude-versus-azimuth (AVAZ) analysis, and time-lapse studies
(Chiu, 2014; Chen et al., 2015; Wang et al., 2015; Gan et al., 2015a; Zhong et al.,
2016; Zhang et al., 2016). Three main types of interpolation approaches have been
proposed in the literature for handling with the interpolation problem. The first type
of approach is based on prediction (Spitz, 1991; Porsani, 1999). A prediction oper-
ator is designed from the low-frequency components of seismic data and is applied
to high-frequency components. However, the predictive filtering method can only be
applied to regularly sampled seismic data. The second type is a transformed domain
method (Candes et al., 2006a; Chen et al., 2014b; Gan et al., 2015b; Liu et al., 2015),
which is based on compressive sensing theory (Candes et al., 2006b; Donoho, 2006)
to achieve a successful recovery using highly incomplete available data (Sacchi et al.,
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1998; Wang, 2003; Chen et al., 2014a). Compressive sensing (CS) is a relatively new
paradigm (Candes et al., 2006b; Donoho, 2006; Donoho et al., 2006; Gan et al., 2016;
Liu et al., 2016) in signal processing that has recently received a lot of attention. The
theory indicates that the signal which is sparse under some basis may still be recovered
even though the number of measurements is insufficient as required by the Shannon’s
criterion. Naghizadeh and Sacchi (2007) propose a multistep autoregressive strategy
which combines the first two types of methods to reconstruct irregular seismic data.
The third type is based on the wave equation. This type of method utilizes the inher-
ent constraint of the seismic data from wave equation to interpolate seismic data, thus
it depends on the known velocity model, which also becomes its limitation (Canning
and Gardner, 1996; Fomel, 2003). Recently, an increasing number of researchers have
developed algorithms connecting the interpolation and deblending (Berkhout, 2008)
problems for the irregular sampled simultaneous-source data (Li et al., 2013), which
provides new recipes for conventional seismic interpolation problem.

Recently, rank reduction based seismic interpolation algorithms become popular
(Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011). The rank reduction meth-
ods for seismic data reconstruction can be divided into two main categories. The first
category applies rank reduction to multilevel block Hankel/Toeplitz matrices formed
from the entries of the tensor. In other words, multidimensional seismic data are
rearranged into a block Hankel or Toeplitz matrix, and a rank reduction algorithm
is used to improve the signal-to-noise ratio (SNR) and to reconstruct the data. Such
algorithm is usually named as the Cadzow method (Trickett and Burroughs, 2009)
or multichannel singular spectrum analysis (MSSA) method (Oropeza and Sacchi,
2011). The other category of rank reduction methods encompasses techniques that
are based on dimensionality reduction of multi-linear arrays or tensors. In this case,
the multichannel seismic data is viewed as a multi-linear array, and dimensional-
ity reduction techniques are directly applied to the multi-linear array (Gao et al.,
2015). For example, Kreimer and Sacchi (2012) adopt the high-order singular value
decomposition (HOSVD) to solve the 5D seismic data reconstruction problem in the
frequency-space domain.

In this paper, we focus on simultaneous reconstruction and denoising of 3D seis-
mic data using the MSSA algorithm. MSSA is a data-driven algorithm developed
from research on alternative tools for the analysis of multichannel time series, which
is based on the truncated singular value decomposition (TSVD) (Golub and Loan,
1996) of the Hankel matrix. MSSA is also an extension of singular spectrum analysis
(SSA) (Vautard and Ghil, 1989), which is used to analyze 1D time series. Missing
traces and random noise increase the rank of the appropriately constructed Hankel
matrix that is composed of seismic data at a given frequency slice. To some extent,
missing data in each frequency slice performs like random noise at the first iteration of
weighted projection onto convex sets (POCS) like framework. Similar to other simul-
taneous seismic data reconstruction and denoising approaches, MSSA transforms the
noisy data with missing traces into a domain where signal and noise are mapped onto
separate subspaces and then removes the noise. Weighted POCS-like method, which
is widely used for seismic data reconstruction and first introduced to the community
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of seismic exploration by Abma and Kabir (2006), is in charge of the reconstruc-
tion procedure. Many numerical experiments, however, indicate that the random
noise cannot be completely removed using the conventional MSSA algorithm and
there still exist some reconstruction errors. The main reasons is that the traditional
TSVD can only decompose the data into a noise subspace and a signal-plus-noise
subspace. Huang et al. (2016) suggest using damped MSSA (DMSSA) algorithm to
better decompose the data into the signal subspace and noise subspace for random
noise attenuation. In order to overcome the defect mentioned above, we extend the
DMSSA algorithm further to simultaneous reconstruction and denoising of 3D seismic
data. We first review the theory of traditional MSSA algorithm, then we introduce
the proposed DMSSA based reconstruction and denoising framework. Next, we intro-
duce the main components in the Matlab package and correlate the interior functions
with the mathematical symbols in the theory sections. Finally, one synthetic and one
field data examples are used to demonstrate the performance using the proposed algo-
rithm and the presented open-source Matlab package. The first synthetic example is
reproducible from the provided Matlab package. The field data example is, however,
not in the public domain, therefore we do not provide the segy file of the field data in
the package. But the field data example is just a straightforward application of the
Matlab package.

RANK REDUCTION VIA MSSA

Consider a block of 3D data Dy (t, x, y) of Ny by N, by N, samples (t =1--- Ny, z =
1---N,,y=1---N,). The MSSA (Oropeza and Sacchi, 2011) operates on the data
in the following way: first, MSSA transforms Dy (¢, 2, y) into D feq(w, z,y)(w =
1---N,) of complex values of the frequency domain. Each frequency slice of the data,
at a given frequency wy, can be represented by the following matrix:

D(2,1) D(22) --- D(2N,
by | 2BV D@ - P "
D(Nilhl) D(Ny72) D(N?J?NI)

To avoid notational clutter we omit the argument wy. Second, MSSA constructs
a Hankel matrix for each row of D; the Hankel matrix R; for row i of D is as follows:

D(i,1) D(i,2) o D(i,m)
D(i,2) D(i,3) oo D(i,m+1) @)

D(i,N, —m+1) D(,N,—m+2) --- D(i,N,)
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Then MSSA constructs a block Hankel matrix M for R;:

R, R, ... R,
R, R ... R,

M = N A (3)
Ry, ni1 Ry, niz - R,

The size of M is [ x J, [ = (N, —m+1)(N,—n+1), J = mn. m and n are predifined
integers chosen such that the block Hankel matrices R; and M are close to square
matrices. The transformation of the data matrix into a block Hankel matrix can be
represented in operator notation as follows:

M = HD, (4)
where H denotes the Hankelization operator.

In general, the block Hankel matrix M can be represented as:
M=S-+N, (5)

where S and N denote the block Hankel matrix of signal and of random noise, re-
spectively.

We assume that M and N have full rank, rank(M)=rank(N) = J and S has
deficient rank, rank(S) = N < J. The singular value decomposition (SVD) of M can

be represented as:
M M\H
Moot o) g [ (e ) ©
where XM (N x N) and ¥} ((I — N) x (J — N)) are diagonal matrices and contain,
respectively, larger singular values and smaller singular values. UM (I x N), U}
(I x (I =N)), VM (J x N) and V) (J x (J — N)) denote the associated matrices
with singular vectors. The symbol [-]¥ denotes the conjugate transpose of a matrix.
In general the signal is more energy-concentrated and correlative than the random
noise. Thus, the larger singular values and their associated singular vectors represent
the signal, while the smaller values and their associated singular vectors represent
the random noise. We let ¥) be 0 to achieve the goal of attenuating random noise
while recovering the missing data during the first iteration in reconstruction process
as follows:
M = Uy (v, (7)
Equation 7 is referred to as the TSVD, which is used in the conventional MSSA
approach.

3D SEISMIC DATA RECONSTRUCTION VIA DMSSA

Nevertheless, M is actually still contaminated with residual random noise. Huang
et al. (2016) suggest using damped MSSA (DMSSA) algorithm to attenuate the resid-
ual random noise that the conventional MSSA fails to. Here, we further extend the
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DMSSA algorithm to simultaneous reconstruction and denoising of 3D seismic data.
Since the missing data at each frequency slice can be regarded as the random noise,
the derivation are similar with Huang et al. (2016) except for the extra reconstruc-
tion process based on the weighted POCS-like method. Therefore, we conclude the
approximation of S as:

S =U's (V)" (8)
T =1— (M) 55K, (9)

where ¢ denotes the maximum element of Y and K denotes the damping factor.
It is worth mentioning that the greater the K is, the weaker the damping is, and
equation 8 degrades to equation 7 when K — +-o00.

The revised TSVD for DMSSA algorithm can be represented in operator notation
as follows:
S=R;M (10)

where we use R4 as the rank reduction operator for DMSSA while R is used for
conventional MSSA.

The filtered data is recovered with random noise attenuated and missing traces
reconstructed by properly averaging along the anti-diagonals of the low-rank matrix

S obtained via revised TSVD in DMSSA:

D = AS = AR;M = ARHD = F,D (11)

A denotes the averaging operator. And the operator F,; represents DMSSA filter. If
R, is changed by the traditional TSVD rank reduction operator R, F can represent
conventional MSSA filter similarly:

F = ARM. (12)

In this paper, we pay our attention to the reconstruction of noisy data, more specif-
ically, those noisy data with very low SNR. Here, we recall the traditional weighted
POCS-like algorithm (Oropeza and Sacchi, 2011) as follows:

Dn :anDobs+(1_an8)o~FDn—l7 n = 172a37"' s Mmax (13)
Substituting the MSSA filter F with the DMSSA filter F;, the improved DMSSA

algorithm for simultaneous seismic data reconstruction and denoising can be formu-
lated as follows:

Dn :anDobs—i_(l_an’S)Odenflu n= 172737"' s Nmax (14>

where Dy = Dgs. a, is an iteration-dependent scalar that linearly decreases from
a; =1 to ay,,, = 0. § denotes the sampling factor. S equals 1 at the observation
point while 0 at the missing traces. o denotes the Hadamard product (entry-wise
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product) of two same size matrices. The algorithm stops when either a maximum
number of iterations 7,4, is reached or ||D,, — D, _1||% < e.

The MSSA based approach is based on the assumption that seismic data is of low
rank at each frequency slice in the frequency-space domain. Since seismic data are
locally composed of plane-wave components, it intuitively satisfies such assumption.
According to our experience, when the SNR is relatively high, in other words with
less noise, the performance of MSSA and DMSSA based approaches is similar to each
other. However, when the SNR is very low, the proposed DMSSA based approach
will outperform the MSSA based approach a lot.

CODE DESCRIPTION

There are two testing Matlab scripts and four main subroutines and three related
subroutines that are required by the Matlab scripts in the Matlab package.

1. test_dmssa_denoise.m This script is used to run the denoising demonstration
using the synthetic 3D seismic data. It is based on the algorithm described in
Huang et al. (2016).

2. test_dmssa recon.m This script is used to run the simultaneous denoising and
reconstruction of the incomplete and noisy synthetic 3D seismic data. It will
generate all the required binary files for Figures 1,3,4. For quick look at the
performance, some 2D image comparisons will also be generated automatically.

The main source subroutines are listed below. All the input and output parameters
are clearly annotated in the subroutines.
1. fxymssa.m This code is used for MSSA based denoising for 2D /3D seismic data.

2. fxydmssa.m This code is used for DMSSA based denoising for 2D /3D seismic
data.

3. fxymssa recon.m This code is used for MSSA based simultaneous denoising
and reconstruction for 2D /3D seismic data.

4. fxydmssa recon.m This code is used for DMSSA based simultaneous denoising
and reconstruction for 2D /3D seismic data.

The other source subroutines are listed below.

1. genmask.m This code is used for generating the random mask sampling operator
(Chen et al., 2015) for the reconstruction test.

2. rperm.m This code is used for permutating the seismic traces randomly.
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3. snrcyk.m This code is used to numerically measure the signal-to-noise ratio
(SNR) of the reconstructed and denoised data based on the criteria introduced
in Chen and Fomel (2015).

There are five different functions in the main subroutines

1. P_.H() This function corresponds to the Hankelization operator H in equations
11 and 12.

2. P.R() This function corresponds to the rank reduction operator R in equation
12.

3. P.RD() This function corresponds to the damped rank reduction operator Ry
in equation 11.

4. P_A() This function corresponds to the averaging operator A in equations 11
and 12.

5. ave_antid() This function applies averaging along the anti-diagonals of an
input matrix.

The only difference between the traditional MSSA program and the proposed
DMSSA program is the rank reduction operator. For a better comparison, we copy
the interior functions P_R() and P_.RD() as follows:

e PR()
function [dout]=P R(din, N)
U, D, V]=svd(din);
dout =U(:;,1: N)«D(1: N, 1: N)x(V(:,1: N)');

return

e PRD()
function |[dout]=P_RD(din, N, K)
U, D, V]=svd(din);

forj=1:N

D(j,j) = D(j,§) % (1 = D(N +1,N + 1)K/D(j, j)");
end

dout =U(:;,1: N)«D(1: N, 1: N)x(V(:,1: N)');
return

The second to fourth lines in P_.RD() correspond to applying the damping operator ex-
pressed in 9. It is worth mentioning that for truncated singular value decomposition,
it is faster to use the Matlab function svds () instead of svd() when the size of the
input matrix is large. However, svd() is faster than svds() when data size is small.
Readers are encouraged to adjust such trivial modification according to specific tasks.
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There is also a Python script called SConstruct. It is used for generating the
final 2D /3D figures used in the paper. It should be run in the Madagascar software
platform (Fomel et al., 2013), which is an open-source geophysical processing software
package, which is available for download at www.ahay.org.

EXAMPLES

We use one synthetic example and one field data example to demonstrate the per-
formances of the traditional and the improved MSSA algorithms from the Matlab
package. The first synthetic example is shown in Figures 1, 2, 3, and 4. Since this
example is a synthetic example, we have the clean dataset in Figure 1la. We add some
bandlimited random noise to the clean data to simulate the noisy data, as shown in
Figure 1b. We then randomly remove 50% traces from the noisy synthetic data, and
obtain the simulated observed noisy data, as shown in Figure lc. Figures 1d and
le show the reconstructed and denoised data using the traditional MSSA and the
proposed modified MSSA algorithms. It is obvious that the proposed approach can
obtain a very accurate recovery (Figure le) compared with the true clean data shown
in Figure la. However, the traditional MSSA approach still causes some noticeable
residual noise. Note that in Figure le, we use N = 3, K = 2. We also show the recon-
structed and denoised data using K = 1 and K = 3 in Figure 2a and 2b, respectively.
It is obvious that when K = 1, as shown in Figure 2a, the proposed algorithm causes
too much damages to the useful signals. When K = 3, as shown in Figure 2b, there
is a bit more residual noise left in the data compared with that when K = 2. Figure
3 shows the comparison of 5th crossline section for all the figures in Figure 1. Figure
4 shows the comparison of 5th inline section for all the figures in Figure 1. From both
Figures 3 and 4 we can confirm that the proposed improved MSSA algorithm can
obtain a much better reconstruction and denoising performance than the traditional
MSSA algorithm.

The field data example is shown in Figure 5. In this example, we do not know the
true answer and thus we can not judge the reconstruction and denoising performance
by comparing the final results with the true model as used in the synthetic example.
Instead, we can only judge the performance by the spatial coherency of the recon-
structed data. Figure 5a shows the observed noisy and incomplete data, which has
been binned to regular grids. There are about 50% missing traces in this example.
Figures 5b and 5¢ show the final results using the traditional and proposed improved
MSSA algorithms. Figures 5d, 5e, and 5f show the 4th crossline slices of Figures 5a,
5b, and 5c, respectively. It can be seen that both methods can effectively reconstruct
the missing data and attenuate the strong random noise, but the proposed improved
MSSA algorithm can obtain even better performance since the events are more spa-
tially coherent. It is worth mentioning that since there is no true answer for the field
data example, it is hard to use quantitive measure to compare the performance of
different approaches. The visual observation on the spatial coherency, instead, is the
most effective and straightforward way.
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Both examples are processed using the introduced Matlab packages. The binary
files output from the Matlab packages are then put into the Madagascar platform to
generate the final figures shown in Figures 1-5.
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Figure 1: (a) Clean data. (b) Noisy data. (c) Observed data with 50% missing
traces. (d) Denoised and reconstructed using the MSSA method. (e) Denoised and
reconstructed using the proposed approach (K = 2).

CONCLUSIONS

We have proposed an improved rank-reduction method by slightly modifying the trun-
cated singular value decomposition (TSVD) formula used in the traditional method.
The resulted new rank reduction method can obtain a significantly cleaner 3D data
recovery result compared with the traditional method based on one synthetic and one
field data examples. We have described how we write the Matlab code for traditional
multichannel singular spectrum analysis (MSSA) method, and how we make the slight
modification to the MSSA code in order to tremendously improve the performance.
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Figure 2: (a) Denoised and reconstructed data using the proposed approach when

K = 3. (b) Denoised and reconstructed data using the proposed approach when
K=1.

This Matlab code package can be used in research and industrial applications for
effectively and efficiently reconstructing the missing seismic traces due to different
reasons.
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