t[x_] := Sqrt[t0^2 + x^2/w - ((-1 + g^2)^2 x^4 (1 + 2 Sqrt[1 - ((-1 + g^2)^2 x^2)/(16 g^2 H^2)]))/ (144 g^3 H^2 v^2 (1 + Sqrt[1 - ((-1 + g^2)^2 x^2)/(16 g^2 H^2)])^2)]; tf[x_] := t0^2 + x^2/w + A x^4/(w^2 (t0^2 + B x^2/w + Sqrt[t0^4 + 2 B t0^2 x^2/w + c x^4/w^2])); x[g_,t_] := 4 t/Sqrt[-1 + g^2]; Abs[(Sqrt[tf[x]] - t[x])/t[x]]; % /. {B -> (-1 + g + g^3 - g^4)/(18 g^2), c -> -((-1 + g)^4 (1 + g + g^2)^2)/(81 g^4), t0 -> (4 (1 + g + g^2) H)/(3 (g + g^2) v), w -> 3 g^2 v^2/(1 + g + g^2), A -> -(-1 + g)^2/(6 g)} /. {H -> 1, v -> 1}; err = 100 % /. {x -> x[g,t]}; pp = ParametricPlot3D[{x[g,t], g, err}, {g, 1.001, 4}, {t, 0, 1}, BoxRatios -> {1, 1, 0.4}, PlotLabel -> "(d) Generalized", AxesLabel -> {"x/H", "v(H)/v0", "% "}, PlotRange -> {{0, 4}, All, All}]; Export["junk_ma.eps", Rasterize[pp, ImageResolution->200], "EPS"];