Layered Orthorhombic model ClearAll[c11,c12,c13,c12,c23,c22,c33,c44,c55,c66,n1,n2,n3,two,trace,G,H,angle,vhelbig,vpphase,vecdiff,vpgroup,vpg,pn12,pn22,pn32] Extra two layers from the same model as the standard model matortho = {{c11(1-δn),c12(1-δn),c13(1-δn),0,0,0},{c12(1-δn),c11(1-δn c12^2/c11^2),c13(1-δn c12/c11),0,0,0},{c13(1-δn),c13(1-δn c12/c11),c33(1-δn c13^2/(c11 c33)),0,0,0},{0,0,0,c44,0,0},{0,0,0,0,c44(1-δv),0},{0,0,0,0,0,c66(1-δh)}}; matortho/.{δn->1/10,δv->1/5,δh->3/11,c11->11,c12->3,c13->2,c33->5,c44->2.5,c66->3.5}//N//MatrixForm (9.9 2.7 1.8 0. 0. 0. 2.7 10.9182 1.94545 0. 0. 0. 1.8 1.94545 4.96364 0. 0. 0. 0. 0. 0. 2.5 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 2.54545 ) (*c119.9,c122.7,c131.8,c2210.92,c231.945,c334.96,c442.5,c552,c662.54545*) matortho/.{δn->1/10,δv->1/5,δh->3/11,c11->14,c12->3,c13->3.5,c33->9,c44->2.5,c66->3}//N//MatrixForm (12.6 2.7 3.15 0. 0. 0. 2.7 13.9357 3.425 0. 0. 0. 3.15 3.425 8.9125 0. 0. 0. 0. 0. 0. 2.5 0. 0. 0. 0. 0. 0. 2. 0. 0. 0. 0. 0. 0. 2.18182 ) (*c1112.6,c122.7,c133.15,c2213.94,c233.425,c338.9125,c442.5,c552,c662.18182*) Exact velocity p1=.;p2=.;p3=.; azi = 30 Pi/180; (*Bottom*) azi2 = 50 Pi/180; (*Middle*) mat = {{c11,c12,c13,0,0,0},{c12,c22,c23,0,0,0},{c13,c23,c33,0,0,0},{0,0,0,c44,0,0},{0,0,0,0,c55,0},{0,0,0,0,0,c66}}; matn = {{n1,0,0,0,n3,n2},{0,n2,0,n3,0,n1},{0,0,n3,n2,n1,0}} ; bond = {{Cos[azi]^2,Sin[azi]^2,0,0,0,-Sin[2azi]},{Sin[azi]^2,Cos[azi]^2,0,0,0,Sin[2azi]},{0,0,1,0,0,0},{0,0,0,Cos[azi],Sin[azi],0},{0,0,0,-Sin[azi],Cos[azi],0},{Sin[2azi]/2,-Sin[2azi]/2,0,0,0,Cos[2azi]}}; bond2 = {{Cos[azi2]^2,Sin[azi2]^2,0,0,0,-Sin[2azi2]},{Sin[azi2]^2,Cos[azi2]^2,0,0,0,Sin[2azi2]},{0,0,1,0,0,0},{0,0,0,Cos[azi2],Sin[azi2],0},{0,0,0,-Sin[azi2],Cos[azi2],0},{Sin[2azi2]/2,-Sin[2azi2]/2,0,0,0,Cos[2azi2]}}; matb= bond.mat.Transpose[bond]; matb2= bond2.mat.Transpose[bond2]; chris = matn.mat.Transpose[matn]; chrisp = chris/.{n1->p1 ,n2->p2 ,n3->p3}; det = Det[chrisp-IdentityMatrix[3]]; chrisb = matn.matb.Transpose[matn]; chrispb = chrisb /.{n1->p1 ,n2->p2 ,n3->p3}; detb = Det[chrispb-IdentityMatrix[3]]; chrisb2 = matn.matb2.Transpose[matn]; chrispb2 = chrisb2 /.{n1->p1 ,n2->p2 ,n3->p3}; detb2 = Det[chrispb2-IdentityMatrix[3]]; Hamiltonian to derive coefficients F = det//Simplify(*Hamiltonian*) Fb = detb; Fb2 = detb2 //N; (c13+c55) p1^2 p3^2 ((c23+c44) (c12+c66) p2^2-(c13+c55) (-1+c66 p1^2+c22 p2^2+c44 p3^2))-(c23+c44) p2^2 p3^2 (-(c13+c55) (c12+c66) p1^2+(c23+c44) (-1+c11 p1^2+c66 p2^2+c55 p3^2))+(-1+c55 p1^2+c44 p2^2+c33 p3^2) (-(c12+c66)^2 p1^2 p2^2+(-1+c66 p1^2+c22 p2^2+c44 p3^2) (-1+c11 p1^2+c66 p2^2+c55 p3^2)) DON'T FORGET TO CHECK WHICH ROOT IS THE RIGHT ONE FOR qP p3sqf=Abs[p3sq/.Solve[0==F/.p3->Sqrt[p3sq],p3sq][[1]]]; (*Orthorhombic qP*) p3sqfb=Abs[p3sq/.Solve[0==Fb/.p3->Sqrt[p3sq],p3sq][[1]]]; p3sqfb2=Abs[p3sq/.Solve[0==Fb2/.p3->Sqrt[p3sq],p3sq][[3]]]; (*p3sqf=p3sq/.Solve[0F/.p3Sqrt[p3sq],p3sq][[3]];*)(*VTI qP*) p3sqf/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}/.{p1->0,p2->0,p3->1}//Simplify p3sqfb/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}/.{p1->0,p2->0,p3->1}//Simplify p3sqfb2/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}/.{p1->0,p2->0,p3->1}//Simplify 0.168421 0.168421 0.168421 p3sqf1=p3sqf/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; (*p3sqf2 = p3sqf/.{c119,c229.84,c335.9375,c442,c551.6,c662.182,c123.6,c232.4,c132.25}; p3sqf3=p3sqf/.{c119,c229.84,c335.9375,c442,c551.6,c662.182,c123.6,c232.4,c132.25};*) p3sqf2 = p3sqfb2/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; p3sqf3=p3sqfb/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; DON'T FORGET A FACTOR OF ΔZ MULTIPLYING THE DERIVATIVES dxdσ = D[F,p1]; dydσ = D[F,p2]; dzdσ = D[F,p3]; dxdσb = D[Fb,p1]; dydσb = D[Fb,p2]; dzdσb = D[Fb,p3]; dxdσb2 = D[Fb2,p1]; dydσb2 = D[Fb2,p2]; dzdσb2 = D[Fb2,p3]; dx1 =Δd1 dxdσ /dzdσ /.{p3->Sqrt[p3sqf1]}/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; dx2 =Δd2 dxdσb2 /dzdσb2 /.{p3->Sqrt[p3sqf2]}/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; dx3 =Δd3 dxdσb /dzdσb /.{p3->Sqrt[p3sqf3]}/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; dy1 = Δd1 dydσ /dzdσ /.{p3->Sqrt[p3sqf1]}/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; dy2 = Δd2 dydσb2 /dzdσb2 /.{p3->Sqrt[p3sqf2]}/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; dy3 = Δd3 dydσb /dzdσb /.{p3->Sqrt[p3sqf3]}/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; dt1 =Δd1 ((p1 dxdσ+p2 dydσ)/dzdσ +p3)/.{p3->Sqrt[p3sqf1]}/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; dt2 =Δd2 ((p1 dxdσb2+p2 dydσb2)/dzdσb2 +p3)/.{p3->Sqrt[p3sqf2]}/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; dt3 =Δd3 ((p1 dxdσb+p2 dydσb)/dzdσb +p3)/.{p3->Sqrt[p3sqf3]}/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; dx = dx1 + dx2 + dx3; dy = dy1 + dy2 + dy3; dt = dt1 + dt2 + dt3; Exact Traveltime (θ controls slowness not azimuth) depth1 = 0.25; depth2 = 0.45;depth3=0.3; (*depth in km*) depth = depth1 + depth2+depth3; vert=({2dt1,2dt2,2dt3})/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.{p1->0,p2->0}; vertt= (2dt)/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.{p1->0,p2->0}; vertn= vert/vertt; vyav = Sqrt[vertn.{9.84,13.5,13.94}]; vxav = Sqrt[vertn.{9,11.7,12.6}]; maxx = 0.85/vxav ; maxy = 0.85/vyav; maxr = R maxx maxy/Sqrt[(maxy^2 Cos[theta]^2 + maxx^2 Sin[theta]^2)]; (*Ellipse in polar*) xoffset =(2 dx)/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.{p1->maxr Cos[theta],p2->maxr Sin[theta]};//Simplify yoffset = (2dy)/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.{p1->maxr Cos[theta],p2->maxr Sin[theta]};//Simplify exacttime = (2dt)/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.{p1->maxr Cos[theta],p2->maxr Sin[theta]}; (*ParametricPlot3D[{xoffset,yoffset,exacttime^2},{R,0,1},{theta,0,2Pi},PlotRange{All,All,All},AxesLabel{"x/H "," y/H","Two-way TT (s) "},ColorFunctionColorData["DarkRainbow"],LabelStyle{Black,FontSize22,FontFamily"Times"},TicksStyleDirective[Thick,20],Mesh9,ImageSize600]*) (*Rasterize[ParametricPlot3D[{xoffset,yoffset,exacttime^2},{R,0,1},{theta,0,Pi/2},PlotRange{All,All,All},BoxRatios{1,1,0.3},AxesLabel{"x/H "," y/H","T (s) "},ColorFunctionColorData["DarkRainbow"],LabelStyle{Black,FontSize22,FontFamily"Times"},TicksStyleDirective[Thick,20],Mesh9,ImageSize800],RasterSize1000,ImageSize600]*) NMO Ellipse δ2L1=((c13+c55)^2-(c33-c55)^2)/(2*c33*(c33-c55))/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; δ1L1=((c23+c44)^2-(c33-c44)^2)/(2*c33*(c33-c44))/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; δ2L2=((c13+c55)^2-(c33-c55)^2)/(2*c33*(c33-c55))/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; δ1L2=((c23+c44)^2-(c33-c44)^2)/(2*c33*(c33-c44))/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; δ2L3=((c13+c55)^2-(c33-c55)^2)/(2*c33*(c33-c55))/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; δ1L3=((c23+c44)^2-(c33-c44)^2)/(2*c33*(c33-c44))/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; rortho = Sqrt[xoffset^2+yoffset^2]; c = xoffset/rortho; s = yoffset/rortho; cb = c Cos[azi]+ s Sin[azi]; sb = s Cos[azi]-c Sin[azi]; cm = c Cos[azi2]+ s Sin[azi2]; sm = s Cos[azi2]-c Sin[azi2]; A2L1 = (1/(5.9375(1+2δ2L1)))c^2 +(1/(5.9375(1+2δ1L1)))s^2; A2L2 =(1/(9(1+2δ2L2)))cm^2 +(1/(9(1+2δ1L2)))sm^2; A2L3 =(1/(8.9125(1+2δ2L3)))cb^2 +1/(8.9125(1+2δ1L3))sb^2; Q2 =1/(vertn.{1/A2L1,1/A2L2,1/A2L3}); orthoell = t0^2 + Q2 rortho^2 /.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); lynmorms[radius_,angle_]:= 100Abs[Sqrt[orthoell]/exacttime-1]/.{theta->angle}/.{p1->maxr Cos[angle],p2->maxr Sin[angle],R->radius}; Map[SetOptions[#,Prolog->{{EdgeForm[],Texture[{{{0,0,0,0}}}],Polygon[#,VertexTextureCoordinates->#]&[{{0,0},{1,0},{1,1}}]}}]&,{Graphics3D,ContourPlot3D,ListContourPlot3D,ListPlot3D,Plot3D,ListSurfacePlot3D,ListVectorPlot3D,ParametricPlot3D,RegionPlot3D,RevolutionPlot3D,SphericalPlot3D,VectorPlot3D,BarChart3D}]; Al-Dajaini (1998) η2L1 = (c11(c33-c55))/(2c13(c13+2c55)+2c33 c55)-1/2/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; η1L1 = (c22(c33-c44))/(2c23(c23+2c44)+2c33 c44)-1/2/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; η3L1 =(c22(c11-c66))/(2c12(c12+2c66)+2c11 c66)-1/2/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25}; ηxyL1 = Sqrt[(1+2η1L1)(1+2η2L1)/(1+2η3L1)]-1 ; η2L2 = (c11(c33-c55))/(2c13(c13+2c55)+2c33 c55)-1/2/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; η1L2 = (c22(c33-c44))/(2c23(c23+2c44)+2c33 c44)-1/2/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; η3L2 =(c22(c11-c66))/(2c12(c12+2c66)+2c11 c66)-1/2/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; ηxyL2 = Sqrt[(1+2η1L2)(1+2η2L2)/(1+2η3L2)]-1 ; η2L3 = (c11(c33-c55))/(2c13(c13+2c55)+2c33 c55)-1/2/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; η1L3 = (c22(c33-c44))/(2c23(c23+2c44)+2c33 c44)-1/2/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; η3L3 =(c22(c11-c66))/(2c12(c12+2c66)+2c11 c66)-1/2/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; ηxyL3 = Sqrt[(1+2η1L3)(1+2η2L3)/(1+2η3L3)]-1 ; A4L1 = (((-2η2L1) (1/(c33(1+2δ2L1)))^2c^4+ (-2ηxyL1) (1/(c33(1+2δ2L1))) (1/(c33(1+2δ1L1)))c^2 s^2 + (-2η1L1 ) (1/(c33(1+2δ1L1)))^2s^4)/t0^2 )/.c33->5.9375/.t0->2 (depth1/Sqrt[5.9375]); A4L2 = (((-2η2L2) (1/(c33(1+2δ2L2)))^2cm^4+ (-2ηxyL2) (1/(c33(1+2δ2L2))) (1/(c33(1+2δ1L2)))cm^2 sm^2 + (-2η1L2 ) (1/(c33(1+2δ1L2)))^2sm^4)/t0^2 )/.c33->9/.t0->2 (depth2/Sqrt[9]); A4L3 = (((-2η2L3) (1/(c33(1+2δ2L3)))^2cb^4+ (-2ηxyL3) (1/(c33(1+2δ2L3))) (1/(c33(1+2δ1L3)))cb^2 sb^2 + (-2η1L3 ) (1/(c33(1+2δ1L3)))^2sb^4)/t0^2 )/.c33->8.9125/.t0->2 (depth3/Sqrt[8.9125]); Q4 =((vert.{1/A2L1,1/A2L2,1/A2L3})^2-vertt (vert.{1/A2L1^2,1/A2L2^2,1/A2L3^2}))/(4 (vert.{1/A2L1,1/A2L2,1/A2L3})^4)+(vertt((vert^3).{A4L1/ A2L1^4,A4L2 /A2L2^4,A4L3/ A2L3^4}))/(vert.{1/A2L1,1/A2L2,1/A2L3})^4; vhorL1 = (1/2)((c11+c66)c^2+(c22+c66)s^2)+(1/2)Sqrt[((c11-c66)c^2-(c22-c66)s^2)^2+4(c12+c66)^2c^2s^2]/.{c11->9,c22->9.84,c33->5.9375,c44->2,c55->1.6,c66->2.182,c12->3.6,c23->2.4,c13->2.25};(*phase velocity suggested by the authors*) vhorL2 = (1/2)((c11+c66)cm^2+(c22+c66)sm^2)+(1/2)Sqrt[((c11-c66)cm^2-(c22-c66)sm^2)^2+4(c12+c66)^2cm^2sm^2]/.{c11->11.7,c22->13.5,c33->9,c44->1.728,c55->1.44,c66->2.246,c12->8.824,c23->5.981,c13->5.159}; vhorL3 = (1/2)((c11+c66)cb^2+(c22+c66)sb^2)+(1/2)Sqrt[((c11-c66)cb^2-(c22-c66)sb^2)^2+4(c12+c66)^2cb^2sb^2]/.{c11->12.6,c22->13.94,c33->8.9125,c44->2.5,c55->2,c66->2.18182,c12->2.7,c23->3.425,c13->3.15}; vhor = vertn.{vhorL1,vhorL2,vhorL3}; Q=Q4/(1/vhor - Q2); al = t0^2 + Q2 rortho^2 + Q4 rortho^4/(1+Q rortho^2)/.{Δd1->depth1,Δd2->depth2,Δd3->depth3}/.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); lyalrms[radius_,angle_]:= 100Abs[Sqrt[al]/exacttime-1]/.{theta->angle}/.{p1->maxr Cos[angle],p2->maxr Sin[angle],R->radius}; Xu et al. (2005) A4avL1 = -2( (η2L1)c^2- (η3L1)c^2 s^2 + (η1L1 )s^2)/(t0^2 /A2L1^2)/.t0->2 (depth1/Sqrt[5.9375]); A4avL2 =-2( (η2L2)cm^2- (η3L2)cm^2 sm^2 + (η1L2 )sm^2)/(t0^2 /A2L2^2)/.t0->2 (depth2/Sqrt[9]); A4avL3 =-2( (η2L3)cb^2- (η3L3)cb^2 sb^2 + (η1L3 )sb^2)/(t0^2 /A2L3^2)/.t0->2 (depth3/Sqrt[8.9125]); Q4av =((vert.{1/A2L1,1/A2L2,1/A2L3})^2-vertt (vert.{1/A2L1^2,1/A2L2^2,1/A2L3^2}))/(4 (vert.{1/A2L1,1/A2L2,1/A2L3})^4)+(vertt((vert^3).{A4avL1/ A2L1^4,A4avL2 /A2L2^4,A4avL3/ A2L3^4}))/(vert.{1/A2L1,1/A2L2,1/A2L3})^4; Qav = Q2/t0^2 - Q4av/Q2/.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); xu = t0^2 + Q2 rortho^2 +Q4av rortho^4/(1+Qav rortho^2)/.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); lyxurms[radius_,angle_]:= 100Abs[Sqrt[xu]/exacttime-1]/.{theta->angle}/.{p1->maxr Cos[angle],p2->maxr Sin[angle],R->radius}; If the azimuth knowledge is off by 20 % cwr = cb Cos[0.8azi]+ sb Sin[1.2azi]; swr = sb Cos[0.8azi]-cb Sin[1.2azi]; cwr2 = cm Cos[0.8azi2]+ sm Sin[1.2azi2]; swr2 = sm Cos[0.8azi2]-cm Sin[1.2azi2]; A2L2wr =(1/(9(1+2δ2L2)))cwr2^2 +1/(9(1+2δ1L2))swr2^2; A2L3wr =(1/(8.9125(1+2δ2L3)))cwr^2 +1/(8.9125(1+2δ1L3))swr^2; Q2wr =1/(vertn.{1/A2L1,1/A2L2wr,1/A2L3wr}); A4avL2wr =-2( (η2L2)cwr2^2- (η3L2)cwr2^2 swr2^2 + (η1L2 )swr2^2)/(t0^2 /A2L2wr^2)/.t0->2 (depth2/Sqrt[9]); A4avL3wr =-2( (η2L3)cwr^2- (η3L3)cwr^2 swr^2 + (η1L3 )swr^2)/(t0^2 /A2L3wr^2)/.t0->2 (depth3/Sqrt[8.9125]); Q4avwr =((vert.{1/A2L1,1/A2L2wr,1/A2L3wr})^2-vertt (vert.{1/A2L1^2,1/A2L2wr^2,1/A2L3wr^2}))/(4 (vert.{1/A2L1,1/A2L2wr,1/A2L3wr})^4)+(vertt((vert^3).{A4avL1/ A2L1^4,A4avL2wr /A2L2wr^4,A4avL3wr/ A2L3wr^4}))/(vert.{1/A2L1,1/A2L2wr,1/A2L3wr})^4; Qavwr = Q2wr/t0^2 - Q4avwr/Q2/.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); xuwr = t0^2 + Q2wr rortho^2 +Q4avwr rortho^4/(1+Qavwr rortho^2)/.t0->2 (depth1/Sqrt[5.9375]+depth2/Sqrt[9]+depth3/Sqrt[8.9125]); lyxuwrrms[radius_,angle_]:= 100Abs[Sqrt[xuwr]/exacttime-1]/.{theta->angle}/.{p1->maxr Cos[angle],p2->maxr Sin[angle],R->radius}; layeredxu20 = Rasterize[ParametricPlot3D[{xoffset,yoffset,100Abs[Sqrt[xuwr]/exacttime-1]}/.{p1->maxr Cos[theta],p2->maxr Sin[theta]},{R,0,1},{theta,0,2Pi},PlotRange->{All,All,All},Boxed->False,BoxRatios->{1,1,0.3},Axes->{True,True,False},AxesLabel->{"x/H","y/H"},Ticks->{{-3,-2,-1,0,1,2,3},{-4,-3,-2,-1,0,1,2,3,4}},ColorFunctionScaling->False,ColorFunction->ColorData[{"DarkRainbow",{0,2}}],Lighting->{{"Ambient",White,{0,0,5}}},ViewPoint->{0,0,Infinity},LabelStyle->{Black,FontSize->22,FontFamily->"Times",Bold},TicksStyle->Directive[Thick,20],Mesh->19,ImageSize->500,PlotLegends->BarLegend[Automatic,LegendLabel->Placed["Error %",Above],LabelStyle->Directive[FontSize->22,FontFamily->"Times",Black,Bold]]]] (*Export["~/Desktop/layeredxuazi503020.eps",layeredxu20]*) Export["junk_ma.eps",layeredxu20,"EPS"]