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ABSTRACT

Moveout approximations are commonly used in velocity analysis and time-domain
seismic imaging. We revisit the previously proposed generalized nonhyperbolic
moveout approximation and develop its extension to the 3D multi-azimuth case.
The advantages of the generalized approximation are its high accuracy and its
ability to reduce to several other known approximations with particular choices
of parameters. The proposed 3D functional form involves seventeen independent
parameters instead of five as in the 2D case. These parameters can be defined
by zero-offset traveltime attributes and four additional far-offset rays. In our
tests, the proposed approximation achieves significantly higher accuracy than
previously proposed 3D approximations.

INTRODUCTION

Reflection moveout approximation is an important ingredient for velocity analysis
and other time-domain processing techniques (Yilmaz, 2001). As a function of source-
receiver offset, the two-way reflection traveltime has the well-known hyperbolic ex-
pression, which is exact for plane reflectors in homogeneous isotropic or elliptically
anisotropic overburden and approximately valid for small offsets in other cases. This
behavior is generally valid for any pure-mode reflections thanks to the source-receiver
reciprocity (Thomsen, 2014). At larger offsets, moveout may deviate from hyperbola
and behave nonhyperbolically due to the effects of either anisotropy or heterogeneity
(Fomel and Grechka, 2001).

In 2D, many extended moveout approximations have been proposed and designed
to work with large-offset seismic data. They have led to better stacked sections and
successful inversions for anisotropic parameters (e.g. Hake et al., 1984; Castle, 1994;
Tsvankin and Thomsen, 1994; Alkhalifah and Tsvankin, 1995; Alkhalifah, 1998; Pech
et al., 2003; Fomel, 2004; Taner et al., 2005; Ursin and Stovas, 2006; Blias, 2009; Aleixo
and Schleicher, 2010; Golikov and Stovas, 2012; Blias, 2013). Fomel and Stovas (2010)
proposed an approximation, which includes five independent parameters that can be
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defined from traveltime derivatives at the zero-offset ray and one far-offset ray. This
approximation was named generalized moveout approzimation (GMA) because its
functional form reduces to several other known approximation forms with particular
choices of parameters and thus, provides a systematic view on the effect of various
choices of parameters on the approximation accuracy. Its application to homogeneous
TI media was studied by Stovas (2010) and the GMA analog in 7-p domain was
developed by Stovas and Fomel (2012). The case of P-SV waves in horizontally
layered VTI media was investigated by Hao and Stovas (2015).

The most basic expression for a 3D moveout approximation that works in arbi-
trary anisotropic heterogeneous media with small offsets can be expressed as the NMO
ellipse and originates in the second-order Taylor polynomial of traveltime squared
around zero offset (Grechka and Tsvankin, 1998; Tsvankin and Grechka, 2011). Sev-
eral large-offset 3D moveout approximations have also been proposed and applied to
seismic velocity analysis in azimuthally anisotropic media (Al-Dajani and Tsvankin,
1998; Al-Dajani et al., 1998; Pech and Tsvankin, 2004; Xu et al., 2005; Vasconcelos
and Tsvankin, 2006; Grechka and Pech, 2006; Farra et al., 2016).The general expres-
sion for the quartic coefficients was studied by Fomel (1994) and Pech et al. (2003)
based on an extension of normal-incident-point theorem.

In this paper, we revisit the 2D generalized nonhyperbolic moveout approximation
and develop its natural extension to 3D. We subsequently show that the proposed
approximation can be reduced to other known forms with different choices of param-
eters. Using numerical tests, we show that the 3D GMA can be several orders of
magnitude more accurate than previously proposed 3D moveout approximations, at
the expense of increasing the number of adjustable parameters. The accuracy and
analytical properties of the proposed approximation make it an appropriate choice
for 3D moveout approximation in the case of long-offset seismic data.

NONHYPERBOLOIDAL MOVEOUT APPROXIMATION

Let t(x,y) represent the two-way reflection traveltime as a function of the source-
receiver offset with components x and y in a given acquisition coordinate frame. We
propose the following general functional form of nonhyperboloidal moveout approxi-
mation (Sripanich and Fomel, 2015a):

A(z,y)
t2+ B(z,y) + /14 + 268B(z,y) + C(z,y)

Pl y) =ty + W(x,y) +

(1)

where
Wi(z,y) = Wiz®+ Waay + Way? |
Alz,y) = A+ A2’y + Azz®y” + Agay® + Asy*
B(z,y) = Byx? + Byxy + Bsy2 )
C(z,y) Ciz* + Coxy + Csa’y® + Cuxy® + Csyt
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and ty denotes the two-way traveltime at zero offset. The total number of indepen-
dent parameters in equation 1 is seventeen including to, W;, A;, B;, and C;. A
simple algebraic transformation of equation 1 leads to the following expression in
polar coordinates:

t(r,a) =~ to+ We(a)r® + (2)
A, (a)r?
12+ B (a)r? + \/tE + 22 B, ()r? + C,(a)r*
where
1
Wea) = m = W cos® a + Wy cosasina + Wisin? a |

3 2

A(a) = Ajcos*a+ Aycos® asina + Az cos® asin® o +
Ay cosasin® a + Assint a |

B.(a) = Bjcos’a+ Bycosasina + Bsysin®a ,

Cy(a) = Cjcos*a+ Cycos® asina + Cycos? asin® a +

Cycosasin® o + Cysin? o |

and r = y/2? + y? represents the absolute offset and « denotes the azimuthal angle
from the z-axis. Along a fixed azimuth «a, equation 1 reduces to the generalized
nonhyperbolic moveout approximation (GMA) of Fomel and Stovas (2010).

Connections with other approximations

1. Setting A; = 0, we can obtain the expression of NMO ellipse from equation 1
(Grechka and Tsvankin, 1998):

t(z,y) = t5 + W(z,y) - (3)

2. Settlng Cl = B%, CQ = ZBlBQ, 03 = QBlBg + B22, 04 = QBQBg, and 05 =
B2, we can reduce equation 1 to the following rational approximation, which
is reminiscent of several previously proposed approximations (Tsvankin and
Thomsen, 1994; Ursin and Stovas, 2006):

Az, y)

23+ Bley)) @)

t*(x,y) =5+ Wz, y) +

3. Considering equation 2 and a horizontal orthorhombic model with A; = —4n, W2,
Ag = —4']71yW1W3, A5 = —47]1W327 A2 = A4 = O, Bl = 0, and Cl = 0, where Ny
is given by (Stovas, 2015)

7715 )

_ \/(1 +om)(1+2m) 5

1+27]3
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equation 2 reduces to the quartic approximation under the acoustic approxima-
tion (Alkhalifah, 2003) without the long-offset normalization:

t2(r,a) =~ ti+ W (a)r* + A(a)r* . (6)
2
~ to+ We(a)r? — o (W7 cos* a + 1, W1 W3 cos® asin® a + m W3 sin® o) 7t
0
Here, 1y, 12, and n3 represent the anellipticity parameters in the planes [y, z],
[z, z], and [z, y] respectively (Alkhalifah and Tsvankin, 1995; Alkhalifah, 2003;

Stovas, 2015) and their definitions in terms of stiffness coefficients under Voigt
notation can be given as follows:

m = Cop(C33 — Cu4) 1 (7)
1 — a0

2¢93(Ca3 + 2C44) + 2¢33¢44 2
C11(C33 - 055) 1

2 = - 5 (8)
2613(613 + 2655) -+ 2033655 2
c2(c11 — Co6) 1
2c12(c12 + 2¢66) + 2¢11C66 2

The approximation proposed by Al-Dajani and Tsvankin (1998) and Al-Dajani
et al. (1998) has the following additional long-offset normalization factor on the
quartic term:

1+ A(a)r? (10)
where A%(a) = A,(a)/ (1/V2 (o) —1/V2 («)), Vier(c) is the phase velocity
of P waves in the [z,y] plane as opposed to group velocity. This introduction of
the normalization term leads to

Ar(a) A
1+ Ax(a)r?
In the limit of V2 = — V2 | A*(a) — 0 and the normalization term becomes
equal to one.

t2(r, a) =~ t3 + W,(a)r? + (11)

4. In an alternative approach to parameterization in an orthorhombic model, we
consider the rational approximation in equation 4 with A;, and B; normalized
by a factor of 1/V? (). Under the choice of linearized coefficients A,(a) =
—4n(a)/VE (a), and B.(a) = (14 2n(«a))/V2,,(a), this leads to the moveout

approximation of the form proposed by Xu et al. (2005) and Vasconcelos and
Tsvankin (2006):

2n()
2(r,a) ~ 2 + W, (a)r? — r 12
) =t O V() + A 2] )
where

n(a) = ny cos® a — n3 cos® acsin? o + 7y sin’ v . (13)
As shown in Appendix A, the moveout approximation in equation 12 can alter-
natively be derived from generalized quartic coefficients in weakly anisotropic
media on the basis of the perturbation theory in combination with the normal-

ization factor in equation 10.
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Analogously to the 2D case, we refer to the proposed approximation (equations 1
and 2) as generalized because of its ability to relate to several other known forms.

GENERAL METHOD FOR PARAMETER DEFINITION

To define parameters in equation 1, we propose to use information from the zero-
offset ray and four far-offset rays along x-axis, y-axis, r = y, and x = —y. Following
an analogy with the 2D scheme by Fomel and Stovas (2010), we derive some of the
coefficient formulas as follows:

Zero-offset ray

The Taylor expansion of equation 1 around the zero offset

A
(2, y) = tg + W(x,y) + (Qi;y) + ... (14)
0

allows for a direct evaluation of nine coefficients: 3, W;, and A; by matching equa-
tion 14 with the expansion of the exact traveltime in vector offset.

Sample | ¢y Co2 C33 Caq Cs5 Ce6 C12 C23 C13
HTI 5.06 | 7.086 | 7.086 2 2.25 | 2.25 | 1.033 | 3.086 | 1.033
Layer 1 9 9.84 | 5.938 2 1.6 | 2182 | 3.6 2.4 2.25
Layer 2 | 11.7 | 13.5 9 1.728 | 1.44 | 2.246 | 8.824 | 5.981 | 5.159
Layer 3 | 12.6 | 13.94 | 8.9125 | 2.5 2 2182 | 2.7 | 3425 | 3.15

Table 1: Normalized stiffness tensor coefficients (in km?/s?) from different anisotropic
samples: HTI is from Al-Dajani and Tsvankin (1998), layer 1 is from Schoenberg and
Helbig (1997), layer 2 is from Tsvankin (1997), and layer 3 is a modifed sample based
on the same fracture model as layer 1.

Finite-offset rays

Suppose that each independent i-th ray corresponds to ray parameters P,; and Py,
and arrives at offset X; and Y; with reflection traveltime T;. The ¢ index ranges from
1 to 4 and denotes the associated ray direction of x-axis, y-axis, r =y, and r = —y
respectively. Substituting moveout approximation 1 into equations ¢(Xy,0) = 7} and
dt/dX, = P,; and solving for B; and C}, we have, from the ray along z-axis (i = 1)
(Fomel and Stovas, 2010):

2(W1 X, — PuTh) WA X?
by = 2 2 T 2 (15)
Xq(tg =17 + PnTh Xq)  TI7 —t5 — Wi X
to(Wh Xy — PpyTh)? 24,15

X} -T2+ PuThXy)? -T2+ Wi X7
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Analogously, B3 and Cj can be found from solving equations ¢(0,Y3) = T and
dt/dYs = Py, which is equivalent to replacing X, P, and Wi with Y5, Py, and Wi
respectively in equations 15 and 16. The remaining coefficients: By, Cs, C3, and Cy
can be solved numerically from the four conditions given below:

ot

a_y’yzo, z=X1 — Pyl ) (17>
ot
£|l‘=0, y=Ys — P:EQ ) (18)
t<X37 X3) = t(}/}n }/3) = T3 3 (19>
(X, —Xy) =t(=Yy,Yy) =Ty . (20)

They represents matchings of P,; and P, along rays in x and y directions and trav-
eltime T3 and T}, along rays in x = y and x = —y directions. Provided the above
information from the zero-offset ray and four finite-offset rays, we can define the re-
maining parameters appearing in the proposed moveout approximation (equation 1)
in a systematic manner.

ACCURACY TESTS
Homogeneous HTT layer

To test the accuracy of the proposed approximation, we first consider a single hor-
izontal layer of an HTI material over flat reflector with properties given in Table 1
and thickness of 1 km. The accuracy comparison between different approximations
is shown in Figure 1with true traveltime computed from ray tracing. The reference
rays for the generalized approximation (equation 1) were chosen in terms of different
ray parameters P, and P, which then gives X;, Y;, and 7T; needed to solve for ap-
proximation coefficients according to equations 15-20. In this example, the reference
rays are associated with P,; = 0.4 and and P,; = 0.0 along z-axis, at and P, = 0.0
and Py = 0.338 along y-axis, at P,3 = 0.23 and P35 = 0.153 along v = y, and at
P,y = 0.23 and Py = —0.153 along v = —y. The proposed approximation shows
smaller error than previous approximations (Figure 1c).

Homogeneous orthorhombic layer

For a more complex anisotropic medium, we consider a single horizontal layer of an
orthorhombic material (Layer 1) with properties given in Table 1 with 1 km thickness
over flat reflector. The accuracy comparison between different approximations is
shown in Figure 2. The reference rays for the generalized approximation (equation 1)
were shot at P,; = 0.283 and and P,; = 0.0 along z-axis, at and P, = 0.0 and
Py, = 0.271 along y-axis, at Py3 = 0.2 and Py3 = 0.169 along 2 = y, and at P,y = 0.2
and P,y = —0.169 along x = —y. Note that the approximation by Xu et al. (2005) is



Sripanich et al. 7 3D generalized nonhyperboloidal moveout

Error %

0.8

Figure 1: Error plots in the homogeneous HTT layer of a) NMO ellipse b) approxi-
mation by Al-Dajani and Tsvankin (1998) (simlar to Al-Dajani et al. (1998)), and c)
the proposed approximation. Note that b) and c) are plotted under the same color
scale and H denotes the reflector depth.
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Error % Error %

Error % Error %

0,075

0,025

Figure 2: Error plots in the homogeneous orthorhombic layer (Layer 1) of a) NMO
ellipse b) approximation by Al-Dajani et al. (1998) c) approximation by Xu et al.
(2005), and d) the proposed approximation. Note that b), ¢), and d) are plotted
under the same color scale and H denotes the reflector depth.
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a simplified version of that by Al-Dajani et al. (1998) and therefore, produces almost
identical results with only a small difference (Figures 2b and 2c). The proposed
approximation shows an error, which is several orders of magnitude smaller than that
of previous approximations (Figure 2d).

Homogeneous orthorhombic layer with azimuthal rotation

Figure 3 shows the relative error plots of several approximations in a similar ho-
mogeneous orthorhombic model as in the previous example but with additional 30 °
azimuthal rotation with respect to the global coordinates. Assuming the rotation az-
imuth is known, the approximations by Al-Dajani et al. (1998) and Xu et al. (2005)
behave largely similar to the original case with the error plots rotated (Figures 3b
and 3c). The proposed approximation is implemented based on the global coordinate
system regardless of the azimuthal orientation of the orthorhombic symmetry plane
and leads to a significantly more accurate result (Figure 3d). The reference rays were
shot at P,; = 0.289 and P,; = 0.004 along z-axis, at P,y = 0.032 and P = 0.282
along y-axis, at Py3 = 0.2 and P35 = 0.206 along = y, and at P,y = 0.2 and
P,y = —0.163 along z = —y.

Layered orthorhombic model

We also test the accuracy of the proposed approximation in a three-layer orthorhom-
bic model over flat reflector with parameters (Layer 1-3) listed in Table 1. The
thicknesses of the three layers are 0.25, 0.45, and 0.3 km respectively. For previously
proposed approximations, the effective coefficients are calculated, as the original au-
thors suggested, by the VTT averaging relationship (Hake et al., 1984; Tsvankin and
Thomsen, 1994). The reference rays for the proposed approximation (equation 1)
were shot at P,; = 0.254 and P,; = 0.0 along z-axis, at Pps = 0 and Pp = 0.24
along y-axis, at Py3 = 0.195 and P,3 = 0.166 along v = y, and at P,y = 0.21 and
P,y = —0.182 along x = —y. The proposed generalized approximation performs with
the highest accuracy (Figure 4).

Layered orthorhombic model with azimuthal rotation in sub-
layers

For a more complex model, we introduce azimuthal rotation of 50° and 30° in the
middle layer (Layer 2) and the bottom layer (Layer 3) of the three-layer model from
the previous example respectively. The angle measurement is done with respect to
the top layer. Similarly to before, the effective coefficients for previously proposed
approximations are calculated by the VTI averaging relationship. The reference rays
for the proposed approximation (equation 1) are shot at P,; = 0.254 and P,; = 0.005
along z-axis, at Py = 0.029 and Py, = 0.24 along y-axis, at P,z = 0.18 and Pz =



Sripanich et al. 103D generalized nonhyperboloidal moveout

0.198 along = y, and at P,y = 0.2 and Pyy = —0.184 along x = —y. The proposed
generalized approximation shows again the highest accuracy (Figure 5).

Error % Error %

10

Error %

Figure 3: Error plots in the 30° rotated homogeneous orthorhombic layer (Layer 1)
of a) NMO ellipse b) approximation by Al-Dajani et al. (1998) ¢) approximation by
Xu et al. (2005) , and d) the proposed approximation. Note that b), ¢), and d) are
plotted under the same color scale and H denotes the reflector depth.

Layered orthorhombic model from SEAM Phase II unconven-
tional model

For a complex numerical test, we create a one-dimensional layered orthorhombic
model (Figure 6) by extracting a depth column out of the SEAM Phase II unconven-
tional model (Oristaglio, 2015). We assume no azimuthal rotation in the sublayers.
Therefore, this model represents an example of complex layered orthorhombic model
with aligned symmetry planes. The reflection traveltimes and offsets can be com-
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Error %

Error % Error %

Figure 4: Error plots in the aligned three-layer orthorhombic model of a) NMO ellipse
b) approximation by Al-Dajani et al. (1998) c) approximation by Xu et al. (2005),
and d) the proposed approximation. Note that b), c¢), and d) are plotted under the
same color scale and H denotes the reflector depth.
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Error %

Figure 5: Error plots in the three-layer orthorhombic model with azimuthal rotation
of sublayers (50° in the middle layer and 30° in the bottom layer) of a) NMO ellipse
b) approximation by Al-Dajani et al. (1998) c) approximation by Xu et al. (2005),
and d) the proposed approximation. Note that b), c¢), and d) are plotted under the
same color scale and H denotes the reflector depth.
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puted from ray tracing and are shown in Figure 7. Note that since this is a layered
orthorhombic medium with aligned symmetry planes, it is sufficient to show the re-
sults only in one quadrant defined by the two slowness components: p, and p, as they
remain symmetric in all other possible quadrants. Following the similar process as
in previous examples, Figure 8 shows a performance comparison of various moveout
approximations. The reference rays for the proposed generalized moveout approxi-
mation (equation 1) are shot at P,; = 0.124 and P,; = 0.0 along z-axis, at Py, = 0.0
and Py = 0.133 along y-axis, at P,z = 0.084 and P,z = 0.0983 along z = y, and at
P,y = 0.085 and Py = —0.0996 along x = —y. The proposed generalized approxi-
mation shows again the highest accuracy with the maximum traveltime error of 6.66
ms and RMS error of 0.083 ms. The maximum traveltime error and RMS error for
other approximations are 309.75 ms and 18.86 ms for the NMO ellipse, 66.33 ms and
2.975 ms for the approximation by Al-Dajani et al. (1998), and 110.87 ms and 3.829
ms for the approximation by Xu et al. (2005).

x (km)

(<]

5

4
VPO (km/s)

3

Figure 6: Vertical P-wave velocity in km/s of the SEAM Phase II unconventional
model.

DISCUSSION

The choice of scheme for defining coefficient parameters can have an effect on the
approximationa ccuracy. We chose to fit nine parameters (to, W;, and A;) along the
zero-offset ray. The remaining eight parameters are divided into six and two fitting
equations. The former is from 7y, P, and P, along the z-axis and T3, P9, and
P, along the y- axis, while the latter is from 75 and Ty along * = y and o = —y.
Another possible option is to consider 7; and the radial ray parameter P,.;(Py;, Pyi),
which would allow two fitting equations from all four directions and make the fitting
scheme more symmetric. However, this approach degenerates even in the simple case
of a homogeneous orthorhombic layer due to the similarity between x = y and x = —y
directions caused by the orthorhombic symmetry. Therefore, we do not propose to

use such scheme.

Moreover, the selection of particular rays shot according to the proposed scheme
also influences the accuracy level. This issue was originally pointed out by Fomel and
Stovas (2010) and has been addressed by Hao and Stovas (2014) in the case of 3D
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Figure 7: One-dimensional model construct from the first column of SEAM Phase
IT unconventional model and a) example reflection rays at constant p, = 0.0908 and
varying p, from 0 to 0.09425. The exact traveltime and the magnitude of offset
r = /2% + y? are shown in b) and c) for increasing values of slowness components p,

and p,.
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Figure 8: Error plots in the one-dimensional layered orthorhombic model from of
SEAM Phase II unconventional model a) NMO ellipse b) approximation by Al-Dajani
et al. (1998) ¢) approximation by Xu et al. (2005), and d) the proposed approximation.
Note that a) is plotted with 120 ms clipping, whereas, b), ¢), and d) are plotted
under the same color scale with 25 ms clipping. The scale bars show the total range
of errors for different approximations. The proposed approximation achieves the
highest accuracy with the maximum traveltime error of 6.66 ms and RMS error of
0.083 ms.
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HTI media. In our experiments, we observe that given the four rays at sufficiently
far offsets, one can expect the proposed approximation to perform with sufficiently
high accuracy for practical purposes with smaller errors closer to the chosen reference
offsets.

Analogously to the 2D GMA of Fomel and Stovas (2010), the proposed approxi-
mation assumes that the traveltime at infinite offset behaves quadratically as

t*(x,y) = T + P;_x° + P}, xy+ P}y, (21)

and there are no linear terms present. This might introduce some errors in a special
case of having an anomalously high-velocity sublayer in a layered medium (Blias,
2013; Ravve and Koren, 2016). In our approximation, we choose not to complicate
the functional form by introducing more parameters to deal wiht this issue.

Even though the required number of parameters for the proposed approximation
(seventeen) is high, this number is necessary for an accurate handling of anisotropy
with complication from possible azimuthal rotation of the subsurface in 3D. Although
other previously proposed approximations require fewer parameters, they may not
produce equally accurate results. Figure 9 shows the results approximation of Xu
et al. (2005) for the two models from last section, when 20% error is introduced
in known azimuthal rotation. We can observe a significant decrease in accuracy
especially in the layered case.

Figure 9: Error plots of the approximation by Xu et al. (2005) in a) the rotated
homogeneous orthorhombic layer (Layer 1) and in b) the three-layer orthorhombic
model with azimuthal rotation in sublayers plotted under similar color scales as the
originals when 20% error is introduced in known azimuthal angles. One can observe
significantly higher errors compared with the original ones in Figures 3c and 5c.

In the case of a single orthorhombic layer, the moveout approximation proposed
in our earlier work (Sripanich and Fomel, 2015b), while requiring only six parameters,
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exhibits the same level of accuracy as the generalized approximation (Figure 10a).
This indicates that the additional nonzero parameters in equation 1 can be captured
by the relationship between anelliptic parameters in each symmetry plane (Sripanich
and Fomel, 2015b; Sripanich et al., 2016). However, this approach may not be suffi-
ciently accurate in a layered model (Figure 10b).

Error % Error %

Figure 10: Error plots of the approximation by Sripanich and Fomel (2015b) in
a) the homogeneous orthorhombic layer (Layer 1) and in b) the aligned three-layer
orthorhombic model.

Provided that a reflection event can be accurately defined in a gather, the pro-
posed 3D moveout approximation is suitable for anisotropic parameter estimation.
One possible method for this application to real seismic data is time-warping (Bur-
nett and Fomel, 2009; Casasanta and Fomel, 2011; Casasanta, 2011), which uses
overdetermined least-squares parameter inversion based on local slope estimation and
non-physical flattening by predictive painting (Fomel, 2010). This method enables in
principles an estimation of all seventeen effective parameters in equation 1, which can
then be inverted for interval values in a layer-stripping fashion (Sripanich and Fomel,
2016). In the presence of lateral heterogeneity, the results from such global inversion
can be used as a initial model for more sophisticated inversion techniques.

CONCLUSIONS

We have introduced an extension of the generalized moveout approximation to 3D.
The proposed approximation, similarly to its 2D analog, reduces to several known
functional forms with particular choices of parameters. The approximation requires
seventeen parameters, which are uniquely defined by zero-offset computations and
four addtional finite-offset rays. Our numerical tests show that, in comparison with
other known 3D moveout approximations, the proposed approximation produces re-
sults with superior accuracy, which is not surprising given the larger number of ad-
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justable parameters. Its advantage becomes more obvious with more complex mod-
els. Moreover, the proposed approximation performs well even in the presence of
anisotropic axis rotation and multiple layers suggesting that only seventeen parame-
ters are sufficient to describe the reflection traveltime in a model with 3D anisotropic
layers. In our experiments, the accuracy can be nearly exact for practical purposes
with less than 0.3% in maximum error in both homogeneous and complex layered
anisotropic models. The proposed moveout approximation can readily be used for
forward reflection traveltime computation or as a basis for inversion for anisotropic
parameters from seismic reflection data.
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APPENDIX A: ALTERNATIVE DERIVATION OF THE
MOVEOUT APPROXIMATION IN EQUATION 12

On the basis of perturbation theory for a general horizontal homogeneous weakly
anisotropic media, we consider the quartic coefficients in equations 1 and 2 A; to be
(Grechka and Pech, 2006; Farra et al., 2016)

4
Ay =——2 (A-1)
ref
Ay = 8(x13 4— X11)
ref
As = A+ 22 —13)
ref
A, = 8(X13 4— X12)
ref
4
A5 - _% )
ref
where L9
Cig Co6 C36 C45
X1 = —5— ;X2 = —— y o X13 = , (A-2)
Vref Vref Vref
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and V. denotes the P-wave velocity in the chosen isotropic background. These
expressions are appropriate for horizontal homogeneous weakly anisotropic media of
any symmetry. A more general form form dipping layer is also discussed by Grechka
and Pech (2006). In the specific case of orthorhombic media, the general quartic
coefficients (equation A-1) can be simplified to

4,(a) = ) (A-3)

where n(«) is given in equation 13. Therefore, the resulting moveout approximation
takes the form of
2n(a) 4

tP(r,a) = 1§+ Wo(a)r® — St (A-4)
tOVref
Subsequently, by setting
Viet = Vamo(@) = (Wi(a)) ™, (A-5)

we obtain the moveout approximation of the form proposed by Xu et al. (2005) and
Vasconcelos and Tsvankin (2006):

2n(a)
tz(T, O{) ~ tg + Wr(Oé)T’2 — WT4 R (A—6)

nmo

without the long-offset normalization, which corresponds to the choice of A,(a) =
—4n(a)/VA (a), B; = 0, and C; = 0 from equation 2. The additional long-offset

normalization factor can be included based on the same scheme as in equation 10

with

14 2n(a)
V2 ()

nmo

A (o) (A-7)

As a result, we obtain the same expression of the moveout approximation in equa-
tion 12 by Xu et al. (2005) in the main text.
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