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ABSTRACT

Seismic data can be decomposed into nonstationary spectral components with
smoothly variable frequencies and smoothly variable amplitudes. To estimate lo-
cal frequencies, I use a nonstationary version of Prony’s spectral analysis method
defined with the help of regularized nonstationary autoregression (RNAR). To
estimate local amplitudes of different components, I fit their sum to the data us-
ing regularized nonstationary regression (RNR). Shaping regularization ensures
stability of the estimation process and provides controls on smoothness of the
estimated parameters. Potential applications of the proposed technique include
noise attenuation, seismic data compression, and seismic data regularization.

INTRODUCTION

Decomposing data into components has an immediate application in noise-attenuation
problems in cases where signal and noise correspond to different components. The
classic Fourier transform, Radon transform (Gardner and Lu, 1991), wavelet trans-
form (Mallat, 2009), curvelet frame (Herrmann and Hennenfent, 2008), and seislet
transform and frame (Fomel and Liu, 2010) are some examples of possible decom-
positions applicable to seismic data. A fundamental characteristic of seismic data is
non-stationarity. In 1D (time dimension), seismic data are nonstationary because of
wave-attenuation effects. In 2D and 3D (time and space dimensions), non-stationarity
is manifested by variable slopes of seismic events. The nonstationary character of
seismic data can be captured by EMD (empirical mode decomposition) proposed by
Huang et al. (1998). EMD has found a number of important applications in seis-
mic data analysis (Magrin-Chagnolleau and Baraniuk, 1999; Battista et al., 2007;
Bekara and van der Baan, 2009; Han and van der Baan, 2013). However, it remains
“empirical” because its properties are not fully understood. Daubechies et al. (2011)
recently proposed an EMD-like decomposition using the continuous wavelet transform
and synchrosqueezing (Daubechies and Maes, 1996). Synchrosqueezing improves the
analysis but remains an indirect method when it comes to extracting spectral at-
tributes (Herrera et al., 2013).
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In this paper, I develop an efficient decomposition algorithm, which explicitly fits
seismic data to a sum of oscillatory signals with smoothly varying frequencies and
smoothly varying amplitudes. Such a decomposition is close in properties to the one
generated by EMD but with explicit controls on the frequencies and amplitudes of
different components and on their smoothness. Recently, Hou and Shi (2011, 2013)
developed an explicit data-adaptive decomposition based on matching-pursuit sparse
optimization, an accurate but computationally expensive method. To implement a
faster approach, I adopt regularized nonstationary regression, or RNR (Fomel, 2009),
a general method for fitting data to a set of basis functions with nonstationary co-
efficients. RNR was previously applied to time-frequency decomposition over a set
of regularly sampled frequencies (Liu and Fomel, 2013). When the input signal is
fitted to shifted versions of itself, RNR turns into regularized nonstationary autore-
gression, or RNAR, and is related to adaptive prediction-error filtering. RNAR was
previously applied to data regularization (Liu and Fomel, 2011) and noise removal
(Liu et al., 2012; Liu and Chen, 2013). In this paper, I use it for spectral analysis and
estimating different frequencies present in the data using a nonstationary extension of
Prony’s method of autoregressive spectral analysis (Marple, 1987; Bath, 1995). After
the frequencies have been identified, I use RNR to determine local, smoothly-varying
amplitudes of different components.

The paper opens with a brief review of RNR and RNAR and explains an extension
of Prony’s method to the nonstationary case. Next, I use simple synthetic and field-
data examples to illustrate performance of the proposed technique.

REGULARIZED NONSTATIONARY REGRESSION

Regularized nonstationary regression (Fomel, 2009) is based on the following simple
model. Let d(x) represent the data as a function of data coordinates x, and bn(x),
n = 1, 2, . . . , N , represent a collection of basis functions. The goal of stationary
regression is to estimate coefficients an, n = 1, 2, . . . , N such that the prediction error

e(x) = d(x)−
N∑
n=1

an bn(x) (1)

is minimized in the least-squares sense. In the case of regularized nonstationary
regression (RNR), the coefficients become variable,

ê(x) = d(x)−
N∑
n=1

ân(x) bn(x) . (2)

The problem in this case is underdetermined but can be constrained by regularization
(Engl et al., 1996). I use shaping regularization (Fomel, 2007) to implement an
explicit control on the resolution and variability of regression coefficients. Shaping
regularization applied to RNR amounts to linear inversion,

a = M−1 c , (3)
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where a is a vector composed of ân(x), the elements of vector c are

ci(x) = S [b∗i (x) d(x)] , (4)

the elements of matrix M are

Mij(x) = λ2 δij + S
[
b∗i (x) bj(x)− λ2 δij

]
, (5)

λ is a scaling coefficient, and S represents a shaping (typically smoothing) operator.
When inversion in equation 3 is implemented by an iterative method, such as conju-
gate gradients, strong smoothing makes M close to identity and easier (taking less
iterations) to invert, whereas weaker smoothing slows down the inversion but allows
for more details in the solution. This intuitively logical behavior distinguishes shaping
regularization from alternative methods (Fomel, 2009).

Regularized nonstationary autoregression (RNAR) corresponds to the case of basis
functions being causal translations of the input data itself. In 1D, with x = t, this
condition implies bn(t) = d(t− n∆t).

AUTOREGRESSIVE SPECTRAL ANALYSIS

Prony’s method of data analysis was developed originally for representing a noiseless
signal as a sum of exponential components (Prony, 1795). It was extended later to
noisy signals, complex exponentials, and spectral analysis (Pisarenko, 1973; Marple,
1987; Bath, 1995; Beylkin and Monzón, 2005). The basic idea follows from the fun-
damental property of exponential functions: eα (t+∆t) = eα t eα∆t. In signal-processing
terms, it implies that a time sequence d(t) = Aeα t (with real or complex α) is

predictable by a two-point prediction-error filter
(
1,−eα∆t

)
, or, in the Z-transform

notation,
F0(Z) = 1− Z/Z0 , (6)

where Z0 = e−α∆t. If the signal is composed of multiple exponentials,

d(t) ≈
N∑
n=1

An e
αn t , (7)

they can be predicted simultaneously by using a convolution of several two-point
prediction-error filters:

F (Z) = (1− Z/Z1) (1− Z/Z2) · · · (1− Z/ZN)

= 1 + a1 Z + a2 Z
2 + · · ·+ an Z

N , (8)

where Zn = e−αn ∆t. This observation suggests the following three-step algorithm:

1. Estimate a prediction-error filter from the data by determining filter coefficients
a1, a2, . . . , aN from the least-squares minimization of

e(t) = d(t)−
N∑
n=1

an d(t− n∆t) . (9)
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2. Writing the filter as a Z polynomial (equation 8), find its complex roots Z1, Z2, . . . , ZN .
The exponential factors α1, α2, . . . , αN are determined then as

αn = − ln(Zn)/∆t . (10)

3. Estimate amplitudes A1, A2, . . . , AN of different components in equation 7 by
linear least-squares fitting.

Prony’s method can be applied in sliding windows, which was a technique de-
veloped by Russian geophysicists (Gritsenko et al., 2001; Mitrofanov and Priimenko,
2011) for identifying low-frequency seismic anomalies (Mitrofanov et al., 1998). I
propose to extend it to smoothly nonstationary analysis by applying the following
modifications:

1. Using RNAR, the filter coefficients an become smoothly-varying functions of
time ân(t), which allows the filter to adapt to nonstationary changes in the
input data.

2. At each instance of time, roots of the corresponding Z polynomial also become
functions of time Ẑn(t). I apply a robust, eigenvalue-based algorithm for root
finding (Toh and Trefethen, 1994). The instantaneous frequency of different
components fn(t) is determined directly from the phase of different roots:

fn(t) = −Re
[
arg

(
Ẑn(t)

2π∆t

)]
. (11)

3. Finally, using RNR, I estimate smoothly-varying amplitudes of different com-
ponents Ân(t).

The nonstationary decomposition model for a complex signal d(t) is thus

d(t) ≈
N∑
n=1

dn(t) , where dn(t) = Ân(t) ei φn(t) (12)

and the local phase φn(t) corresponds to time integration of the instantaneous fre-
quency determined in Step 2:

φn(t) = 2π

t∫
0

fn(τ)dτ . (13)

For ease of analysis, real signals can be transformed to the complex domain by using
analytical traces (Taner et al., 1979).
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Figure 1: (a) Test signal from Liu et al. (2011) composed of two variable-frequency
components. (b) Time-frequency decomposition. (c) Instantaneous frequencies esti-
mated by RNAR.
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a

b

Figure 2: Decomposition of the signal from Figure 1a into two spectral components
using RNR.
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Benchmark tests

Figure 1a shows a benchmark signal from Liu et al. (2011), which consists of two
nonstationary components with smoothly varying (parabolic) frequencies. The cor-
responding time-frequency analysis over a range of regularly sampled frequencies is
shown in Figure 1b. Two instantaneous frequencies were extracted at Step 2 of the
algorithm from a time-varying, three-point prediction-error filter (Figure 1c). They
correspond precisely to the two components present in the synthetic signal. Finally,
Step 3 separates these components (Figure 2.)

The next benchmark example is taken from Herrera et al. (2013). Figure 3a shows
the input signal, which is composed of several components with variable frequencies.
The components can be identified in the time-frequency decomposition analysis (Fig-
ure 3b) generated with the method of Liu et al. (2011). More directly, they are
extracted using RNAR (the method of this paper), with the output shown in Fig-
ure 3c. Fitting a sum of different components to the data by RNR, we can estimate
their respective amplitudes. The output is shown in Figure 4. For comparison, I
show the output of EMD (empirical mode decomposition) in Figure 5. For robust-
ness, I used EEMD (ensemble EMD) suggested by Wu and Huang (2009). Although
EEMD succeeds in separating the signal into components with variable frequencies,
the individual components are not as meaningful as those identified by RNAR.

The third benchmark test is taken from Hou and Shi (2013). The signal in this case
(Figure 6a) consists of three components with variable frequencies and amplitudes
(Figure 7). RNAR correctly identifies the three components (Figure 6c) that are
also visible on the time-frequency plot (Figure 6b). Next, RNR extracts the three
components (Figure 8) by fitting their sum to the data (Figure 9) and adjusting the
amplitudes. The sparse inversion algorithm proposed by Hou and Shi (2013) achieves
a more accurate result in this case but at a much higher computational cost.

Discussion

The cost of the proposed decomposition is O (N NtNiter), where N is the number of
components, Nt is the number of time samples, and Niter is the number of conjugate-
gradient iterations for shaping regularization (typically between 10 and 100). This is
significantly faster than the O (N2

t Niter) cost of time-frequency decomposition for a
regularly sampled range of frequencies.

Although the examples of this paper use only 1D analysis, the proposed technique
is also directly applicable to analyzing variable slopes of 2D and 3D seismic events,
where the analysis applies to different frequency slices in the f -x domain (Canales,
1984; Spitz, 1999, 2000; Liu et al., 2012; Liu and Chen, 2013).
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Figure 3: (a) Test signal from Herrera et al. (2013) composed of several variable-
frequency components. (b) Time-frequency decomposition. (c) Instantaneous fre-
quencies estimated by RNAR.
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Figure 4: Decomposition of the signal from Figure 3a into spectral components using
RNR. The components are sorted in the order of decreasing frequency.
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Figure 5: Decomposition of the signal from Figure 3a into intrinsic mode functions
using EMD. Compare with Figure 4.
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Figure 6: (a) Test signal from Hou and Shi (2013) composed of several variable-
frequency and variable-amplitude components. (b) Time-frequency decomposition.
(c) Instantaneous frequencies estimated by RNAR.

TCCS-6



Fomel 12Regularized nonstationary autoregression

Figure 7: Signal components making the signal in Figure 6a.

Figure 8: Decomposition of the signal from Figure 6a into spectral components using
RNR.
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Figure 9: Fitting the signal from Figure 6a with the sum of three components shown
in Figure 8.

EXAMPLES

To illustrate performance of the proposed approach in field-data applications, I first
use a simple 1D example: a single seismic trace from a marine survey. Figure 10 shows
the input trace and the output of RNAR, with a five-point adaptive prediction-error
filter. The four variable instantaneous frequencies extracted from the roots of the
filter are shown in Figure 11. They correspond to four different spectral components
extracted from the data in Step 3 (Figure 12.) Surprisingly, only four components with
smoothly varying frequencies and amplitudes are sufficient to describe a significant
portion of the signal, including the effect of attenuating frequencies at later times
(Figure 13.)

The second example is a 2D section from a land seismic survey (Figure 14a),
analyzed previously by Fomel (2007) and Liu and Fomel (2013). I choose a three-
point prediction-error filter to highlight the two most significant data components.
The fitting error is shown in Figure 15 and contains mostly random noise. The
two estimated spectral components are shown in Figure 16, with the corresponding
instantaneous frequencies fn)t) shown in Figure 17. The corresponding amplitudes
|Ân(t)| are shown in Figure 18. Comparing frequency and amplitude attributes from
different components, a low-frequency anomaly (a zone of attenuated high frequencies)
in the top-left part of the section becomes apparent. This anomaly might indicate
presence of gas (Castagna et al., 2003).
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Figure 10: Seismic trace and residual after adaptive prediction-error filtering with
RNAR.

Figure 11: Instantaneous frequencies of four components extracted from seismic trace
in Figure 10 using RNAR.
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Figure 12: Four nonstationary spectral components corresponding to frequencies in
Figure 11.

Figure 13: Fitting input seismic trace with sum of four spectral components shown
in Figure 12.
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Figure 14: (a) 2D seismic data section. (b) Result of fitting data with two components
shown in Figure 16.
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Figure 15: Residual error after fitting seismic data from Figure 14 with two compo-
nents shown in Figure 16.

CONCLUSIONS

I have presented a constructive approach to decomposing seismic data into spec-
tral components with smoothly variable frequencies and smoothly variable ampli-
tudes. The output of the proposed algorithm is close to that of empirical model
decomposition (EMD) and related techniques, such as the synchrosqueezing trans-
form (SST), but with a more explicit control on parameters and more direct access
to instantaneous-frequency and amplitude attributes. The main tool for the task is
regularized nonstationary regression (RNR), which is applied twice: first to estimate
local frequencies by autoregression (RNAR) and then to estimate local amplitudes.
Although all examples shown in this paper use only 1D analysis, the proposed tech-
nique is also applicable to analyzing 2D or 3D variable-slope seismic events in the
f -x domain. Potential applications may include noise attenuation, data compression,
and data regularization.
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Figure 16: Two nonstationary spectral components: high-frequency (Component 1)
and low-frequency (Component 2) estimated from the data shown in Figure 14a.
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Figure 17: Instantaneous frequencies of high-frequency and low-frequency components
from decomposition shown in Figure 16.
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Figure 18: Amplitudes of high-frequency and low-frequency components from decom-
position shown in Figure 16. The apparent attenuation of high frequencies in the top
left part of the section may indicate presence of gas.
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