OC-seislet: seislet transform construction with differential offset continuation
Next:
About this document ...
Up:
Liu and Fomel: OC-seislet
Previous:
Acknowledgments
Bibliography
Abma, R., and N. Kabir, 2006, 3D interpolation of irregular data with a POCS algorithm: Geophysics,
71
, E91-E97.
Bagaini, C., and U. Spagnolini, 1996, 2-D continuation operators and their applications: Geophysics,
61
, 1846-1858.
Biondi, B., S. Fomel, and N. Chemingui, 1998, Azimuth moveout for 3-D prestack imaging: Geophysics,
63
, 574-588.
Biondi, B., and I. Vlad, 2002, Amplitude preserving prestack imaging of irregularly sampled 3-D data: 72nd Annual International Meeting, SEG, Expanded Abstracts, 2170-2173.
Bleistein, N., and H. Jaramillo, 2000, A platform for kirchhoff data mapping in scalar models of data acquisition: Geophysical Prospecting,
48
, 135-161.
Bolondi, G., E. Loinger, and F. Rocca, 1982, Offset continuation of seismic sections: Geophysical Prospecting,
30
, 813-828.
Chauris, H., and T. Nguyen, 2008, Seismic demigration/migration in the curvelet domain: Geophysics,
73
, S35-S46.
Claerbout, J. F., 2000, Basic Earth imaging: Stanford Exploration Project,
http://sepwww.stanford.edu/sep/prof/
.
Cohen, A., I. Daubechies, and J. Feauveau, 1992, Biorthogonal bases of compactly supported wavelets: Communications on Pure and Applied Mathematics,
45
, 485-560.
Daubechies, I., and W. Sweldens, 1998, Factoring wavelet transforms into lifting steps: The Journal of Fourier Analysis and Application,
4
, 247-269.
Deregowski, S. M., and F. Rocca, 1981, Geometrical optics and wave theory of constant offset sections in layered median: Geophysical Prospecting,
29
, 374-406.
Do, M. N., and M. Vetterli, 2005, The contourlet transform: an efficient directional multiresolution image representation: IEEE Trans. Image Process.,
14
, 2091-2106.
Douma, H., and M. V. de Hoop, 2007, Leading-order seismic imaging using curvelets: Geophysics,
72
, S231-S248.
Fomel, S., 2001, Three-dimensinal seismic data regularization: PhD thesis, Ph.D. thesis, Stanford University.
----, 2002, Applications of plane-wave destruction filters: Geophysics,
67
, 1946-1960.
----, 2003a, Differential azimuth moveout: 73th Annual International Meeting, SEG, Expanded Abstracts, 2068-2071a.
----, 2003b, Seismic reflection data interpolation with differential offset and shot continuation: Geophysics,
68
, 733-744.
----, 2003c, Theory of differential offset continuation: Geophysics,
68
, 718-732.
----, 2006, Towards the seislet transform: 76th Annual International Meeting, SEG, Expanded Abstracts, 2847-2851a.
Fomel, S., and Y. Liu, 2010, Seislet transform and seislet frame: Geophysics,
75
, V25-V38.
French, W. S., 1974, Two-dimensional and three-dimensional migration of model-experiment reflection profiles: Geophysics,
39
, 265-277.
Hale, D., 1991, Dip moveout processing: SEG, Course Notes Series 4.
Herrmann, F., D. Wang, G. Hennenfent, and P. Moghaddam, 2008, Curvelet-based seismic data processing: a multiscale and nonlinear approach: Geophysics,
73
, A1-A5.
Herrmann, F. J., and G. Hennenfent, 2008, Non-parametric seismic data recovery with curvelet frames: Geophysical Journal International,
173
, 233-248.
Lian, C., K. Chen, H. Chen, and L. Chen, 2001, Lifting based discrete wavelet transform architecture for JPEG2000: The 2001 IEEE International Symposium on Circuits and Systems, IEEE, II445-II448.
Liner, C., 1990, General theory and comparative anatomy of dip moveout: Geophysics,
55
, 595-607.
Liu, B., and M. D. Sacchi, 2004, Minimum weighted norm interpolation of seismic records: Geophysics,
69
, 1560-1568.
Mallat, S., 2009, A wavelet tour of signal processing, the sparse way: Academic Press, Third Edition.
Pennec, E. L., and S. Mallat, 2005, Sparse geometrical image representation with bandelets: IEEE Trans. Image Process.,
14
, 423-438.
Petkovsek, M., H. S. Wilf, and D. Zeilberger, 1996,
: A K Peters Ltd.
Salvador, L., and S. Savelli, 1982, Offset continuation for seismic stacking: Geophysical Prospecting,
30
, 829-849.
Spagnolini, U., and S. Opreni, 1996, 3-D shot continuation operator: 66th Annual International Meeting, SEG, Expanded Abstracts, 439-442.
Starck, J. L., E. J. Candés, and D. L. Donoho, 2000, The curvelet transform for image denoising: IEEE Trans. Image Process.,
11
, 670-684.
Sweldens, W., 1995, The lifting scheme: A new philosophy in biorthogonal wavelet constructions: Wavelet Applications in Signal and Image Processing III, Proc. SPIE 2569, 68-79.
Sweldens, W., and P. Schröder, 1996, Building your own wavelets at home,
in
Wavelets in Computer Graphics: ACM SIGGRAPH Course Notes, 15-87.
Velisavljevic, V., 2005, Directionlets: anisotropic multi-directional representation with separable filtering: PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
Xu, S., Y. Zhang, D. Pham, and G. Lambaré, 2005, Antileakage Fourier transform for seismic data regularization: Geophysics,
70
, V87-V95.
Zhou, B., I. M. Mason, and S. A. Greenhalgh, 1996, An accurate formulation of log-stretch dip moveout in the frequency-wavenumber domain: Geophysics,
61
, 815-820.
Zwartjes, P., and A. Gisolf, 2007, Fourier reconstruction with sparse inversion: Geophysical Prospecting,
55
, 199-221.
2013-07-26