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ABSTRACT

Analyzing seismic attributes in the frequency domain is helpful for reservoir char-
acterization. To analyze the reservoir interval of interest in detail, it is important
to capture the seismic response at each frequency subset. Spectral recomposition
can be used to extract significant components from the seismic spectrum. We
propose a separable nonlinear least-squares algorithm for spectral recomposition,
which estimates both linear and nonlinear parts automatically in separate steps.
Our approach is applied to estimate fundamental signal parameters, peak fre-
quencies and amplitudes, with which the seismic spectrum can be reconstructed.
Automated spectral recomposition helps us visualize frequency-dependent geo-
logical features on both cross sections and time slices by extracting significant
frequency components. Spectral recomposition can also indicate how frequency
contents attenuate with time.

INTRODUCTION

Frequency-domain seismic attributes can be useful in stratigraphic and hydrocarbon
reservoir characterization (Castagna et al., 2003; Li et al., 2011). If the seismic re-
sponse can be captured at each frequency subset, the reservoir interval of interest
can then be scrutinized in greater detail. Spectral decomposition is a technique that
was developed at Amoco in the 1990’s (Partyka et al., 1999). Various time-frequency
analysis methods have been employed for frequency decomposition since then. Di-
lay and Eastwood (1995) applied short-time Fourier transform, which unfortunately
suffers from a time-frequency resolution limit (Chakraborty and Okaya, 1995). Liu
(2006) and Chen et al. (2008) applied spectral decomposition in the time domain by
decomposing the input seismogram into constituent wavelets and then summing the
Fourier spectra of individual wavelets. This approach experiences difficulties when
the frequency range is large, because it relies on the accuracy of wavelet decom-
position, whose residuals commonly introduce bias into “frequency gathers” (Chen
et al., 2008). Liu et al. (2011) and Liu (2006) implemented spectral decomposition by
time-frequency analysis using an iterative inversion framework with the help of local
attributes.
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Tomasso et al. (2010) defined frequency recomposition in seismic forward model-
ing as an estimation of components of the seismic spectrum. They showed how to
make forward seismic models by recomposing single-frequency models into a multi-
frequency model. Different from all previous approaches, spectral recomposition
models and reconstructs the seismic spectrum instead of decomposing it. However,
Tomasso et al. (2010) manually picked component frequencies and amplitudes, which
may not be accurate and highly depends on personal experience. In this paper,
we propose spectral recomposition using separable nonlinear least-squares estimation
(Golub and Pereyra, 1973), which simultaneously and automatically estimates both
linear and nonlinear parts of the Ricker wavelet spectrum. It provides an accurate
and direct estimation of amplitudes and peak frequencies of various Ricker wavelets.

A problem is separable if the model can be represented as a linear combination
of functions that have a nonlinear parametric dependence. A separable least-squares
estimation fits frequencies and amplitudes with large variations, and provides com-
puting confidence, as well as prediction and calibration intervals. The Gauss-Newton
algorithm, a method of minimizing the residual sum of squares, is effective both when
residuals are small and when measurement errors are additive and the data set is large
(Osborne, 2007). An analogous method was used previously by Browaeys and Fomel
(2009) for fitting von Kármán distributions, and by Liu and Fomel (2010) for fitting
a single Ricker wavelet.

We represent a seismic spectrum as the sum of different Ricker components and
use the Gauss-Newton method to fit it with a sum of Ricker wavelet spectra so as
to estimate the peak frequency and amplitude of each component. On a field data
example from the Gulf of Mexico, we show that automatic spectral recomposition can
improve seismic stratigraphic interpretation and help in seismic attribute studies.

THEORY

We represent a seismic spectrum as the sum of different Ricker components (Tomasso
et al., 2010):

d(f) ≈
n∑

i=1

aiψi(mi, f) , (1)

where d(f) is the spectrum of a seismic trace, and ai and mi are the amplitude and
peak frequency of the i-th Ricker spectrum component, given as

R(f) = aψ(m, f) = a
f 2

m2
exp(− f

2

m2
) . (2)

Thus, the model is a linear combination of Ricker wavelet spectra, which has nonlin-
ear functions and depends on multiple parameters. To estimate the Ricker wavelet
spectra, we need both a = {a1, a2, ..., an} and m = {m1,m2, ...,mn} coefficients. The
estimation error is

rj = d(fj)−
n∑

i=1

ai(mi)ψi(mi, fj) . (3)
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The optimal least-squares estimation requires

min
a,m
‖r(a,m)‖22 . (4)

The goal of separable nonlinear least-squares estimation (Björck, 1996) is to find
a global minimizer of the sum of squares of nonlinear functions. The separability
aspect comes from solving linear and nonlinear parts separately (Scolnik, 1972). The
algorithm we use in this paper is known as the variable projection algorithm (Golub
and Pereyra, 1973). It provides solutions for a and m by exploring the fact that r
depends on a linearly.

NUMERICAL METHOD

Assuming nonlinear parameters of m, linear parameters of a can be obtained by
solving the linear least-squares problem,

a = ψψψ(m)†d , (5)

where ψψψ(m) is the matrix composed of ψi(mi, fj) and ψψψ(m)† is the Moore-Penrose
generalized inverse of the ψψψ(m) matrix. Replacing this a in the original function, the
minimization problem takes the form

min
m

∥∥(III −ψψψ(m)ψψψ(m)†)d
∥∥2
2
, (6)

where the linear parameters have been eliminated (Golub and Pereyra, 1973). We
use the Gauss-Newton method (Björck, 1996) to linearize the problem as follows:

d(fi) ≈
∑
i

Rj(mi, fj) +
∑
i

∂Rj

∂mi

∆mi

≈
∑
i

ai ψψψ(mi, fj) +
∑
i

[a′i ψψψ(mi, fj) + ai ψψψ
′(mi, fj)]∆mi.

(7)

Starting with initial values of mi, we are able to solve for ai and a′i using equation 5.
Then we solve for the model increment ∆mi. After a number of iterations, summation
of ∆mi converges to the estimated value. The Gauss-Newton method is efficient. In
most cases, approximately 20 iterations provide an acceptable convergence. Fitting
more component frequencies helps minimize the residual. Geological factors can help
the user decide how many components to include in the model. In addition, providing
good initial values helps the algorithm avoid being trapped in a local minimum.

APPLICATION

In this section, we show how spectral recomposition can be used in interpretation.
First, we test automated spectral recomposition using synthetic and field data. We
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then use automated spectral recomposition to simulate and estimate how frequency
components attenuate in the subsurface. Finally, we perform thin-bed stratigraphic
interpretation using data from Starfak and Tiger Shoal fields of offshore Louisiana.

Synthetic and field data test

To test our method, we generated a wavelet composed of three Ricker wavelets with
peak frequencies of 10, 20, and 50 Hz (Figure 1.) Applying a separable nonlinear
least-squares estimation, we estimated peak frequencies at 9.999, 19.999, and 49.995
Hz. The residual sum of squares equals approximately 10−7 after 50 iterations. The
estimation fits the wavelet spectrum accurately, as shown in Figure 1. Generally
speaking, the more terms we use to fit the data, the better fitting result we may
obtain. However, it is geological reasoning, not statistical factors that determines how
many terms should be used in the model. A real data example, shows that spectral
recomposition works well for field data (Figure 2). In this case, the estimated peak
frequencies are approximately 15 Hz, 31 Hz, and 43 Hz.

Frequency attenuation estimation

Spectral recomposition can be used to indicate how various frequency components
attenuate in the subsurface. Different from spectral decomposition, spectral recom-
position extracts significant components from seismic data by modeling the spectrum,
i.e. fitting spectrum data with summation of Ricker components. With the help of lo-
cal time-frequency analysis (Liu et al., 2011), we re-composed the spectra of a seismic
trace at each time depth. Figure 3 shows recomposition examples at four different
time depths. Figure 4 compares our spectral recomposition result with the result of
time-frequency analysis. At approximately 1 second, one of the components has a
peak frequency as high as 65 Hz. It attenuates gradually to about 8 Hz in 4 seconds.
Spectral decomposition indicates information of whole frequency spectrum at each
time depth, but provides us no extracted key components. It can be easily found
that the spectral recomposition result is consistent with time-frequency analysis re-
sult. Thus, spectral recomposition provides information related to any specific layer
in which the user might be interested and builds a deeper understanding of seismic
attenuation in the subsurface.

Stratigraphic interpretation

Setting the bandwidth for the frequency component ensures an accurate interpreta-
tion. Carrying valuable geological information, the main lobe of a wavelet has a finite
duration, which means that it covers a certain range in the frequency domain. How-
ever, interpreters tend to pick a single frequency with bandpass filtering, which hardly
covers the corresponding seismic information because a single frequency appears as
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Figure 1: (a) A wavelet composed of 10, 20 and 50 Hz Ricker components. (b) The
estimated wavelet spectrum components are plotted individually. The estimated peak
frequencies of these components are 9.999, 19.999 and 49.995 Hz. (c) We computed
and estimated the spectrum of the wavelet in (a). Spectral recomposition result (in
green) fits the spectrum (in black) very well.
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Figure 2: (a) Spectra of ricker wavelet components. Each spectral component is well
separated, probably indicating different geological factors. (b) Spectral recomposition
result (in blue) fits the seismic spectrum (in black) well.
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Figure 3: Four time depths, 0, 2, 3 and 5 second have been plotted in (a), (b), (c) and
(d) to show spectral recomposition reconstructs Ricker component at different depths.
Field data results have been plotted in solid black lines. The spectral recomposition
results have been plotted in dotted red lines.
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Figure 4: (a) One single seismic trace; (b) Time-frequency analysis result of the trace
in (a); (c) Automated spectral recomposition reconstructs Ricker components at each
time depth. The reconstructed result is quite consistent with time-frequency analysis
in (b).
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a spike ignoring all other frequency content. Spectral recomposition helps in compu-
tation of frequency bandwidth of the main lobe. One can compute td =

√
6/(fm π)

as in Figure 5, where td is the dominant wavelength and fm is the peak frequency.
The first zero crossing is computed as tr = td/

√
3 (Sheriff, 2002). Having estimated

the dominant wavelength, we can set the corresponding bandwidth in the frequency
domain.

fm td 

tr 

Figure 5: After extracting peak frequency fm, we compute the dominant wavelength
and bandpass filter. (a) Spectrum with peak frequency fm. (b) Ricker wavelet with
dominant wavelength td and first zero crossing tr.

Spectral recomposition extracts significant components from seismic data. Pick-
ing the peak frequencies and setting their bandwidths produce results, as shown in
Figures 6b and 6c. The same cross section is displayed with a manually picked peak
frequency in Figure 6a. Note that Figures 6b and 6c reveal more geologic features.
Reflections and seismic events are displayed better in Figure 6b and 6c; for example, a
fault system clearly shows up in both Figure 6b and 6c, but not in Figure 6a. Deeper
events are also well displayed in Figure 6c, but not in Figure 6a.

The concept behind spectral recomposition is that the seismic response of the ge-
ologic unit has a characteristic expression in the frequency domain that is indicative
of its significant components (Tomasso et al., 2010). Hence, spectral recomposition
can be used in time-slice or stratal-slice interpretation. We start by picking a de-
positional surface (geologic-time surface) so that any seismic attribute extracted on
such a surface could represent a genetic depositional unit. Such a seismic surface
display was termed a stratal slice (Zeng et al., 1998a,b). To showcase the ”recompo-
sition” technique developed here, we used data from Starfak and Tiger Shoal fields
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a b

c

Figure 6: (a) Seismic data from Starfak and Tiger Shoal field displayed with manually
picked frequency bandpass filter. Using spectral recomposition, we display the same
seismic data with two significant components in (b) and (c). A fault system between
inline 800 to 900 clearly stands out in (b). Deep events below 2.4s are well displayed
in (c). However, neither the fault system nor the deep events are well displayed in
(a).
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of offshore Louisiana, a 135-mile2 3-D survey area. The study area lies along the
western periphery of the ancestral Mississippi River depocenter (McGookey, 1975),
most recently designated the central Mississippi sediment-dispersal axis by Galloway
et al. (2000).

Zeng et al. (2001) constructed and interpreted stratal slices by using special tools
to restore and refine multiple seismic slices in the wire-line-log context in both the
traveltime domain and the relative geologic-time domain. Their approach includes
conditioning seismic data to log lithology by 90o phasing to achieve better well log
integration, imaging, and interpretation of the sequential, planoform geomorphol-
ogy of the depositional systems (Zeng and Backus, 2005). Our goal is to use spectral
recomposition to further improve the image of seismic depositional facies; e.g. a high-
frequency component helps indicate thin stratigraphic layers, while a low-frequency
component helps identify thick stratigraphic layers. Depositional facies of different
thickness can be differentiated using spectral recomposition. After extracting signifi-
cant spectral components and setting band pass filters, we plotted the stratal slices of
Starfak and Tiger Shoal field. Figure 7a is an upper Miocene-age horizon extracted
by Zeng and Hentz (2004). Spectral recomposition shows that the component with
22 Hz peak frequency is a significant one, thus we have Figure 7b. As can be seen,
Figure 7b improves imaging of the architectural elements within the depositional sys-
tem. The thin, narrow channel sandstones in relict delta are more clearly imaged in
Figure 7b than in Figure 7a. The shelf systems can be easily identified in Figure 7b
but not in Figure 7a. Figure 7b is also less affected by acquisition footprint compared
with Figure 7a. More than that, spectral recomposition works more efficiently. Both
true time and thickness information has been extracted in the process. No prior time
or depth-thickness estimate is required for automatic spectral recomposition.

After extracting significant signal components, the result of spectral recomposition
naturally admits a Red-Green-Blue (RGB) color-blending plot. RGB color-blending
plot takes advantage of the fact that human eyes can discriminate a large numbers
of colors. One can plot horizontal slices of different frequency content in different
colors, either red, green or blue, and combine them into one figure (Chopra and
Marfurt, 2007). Picking frequency subsets automatically with solid geological and
geophysical reasoning, spectral recomposition helps standardize the workflow of the
RGB color-blending plot. As we have seen in Figure 3, spectral recomposition extracts
dominant components at each time depth. Given a time slice or stratal slice, we
extract the significant frequency components, compute the duration of the main lope
of the wavelet from the area of interest, and set the appropriate bandwidth in the
frequency domain. Plotting three different frequency components in RGB colors and
combining them together, we produce RGB color-blending plots in Figure 8. With
a sense of relative sandstone thickness distribution, RGB color blending of spectral
recomposition brings useful information together and helps reveal geological features
of interest.
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Figure 7: Use of spectrum recomposition to improve thin-bed stratigraphic interpre-
tation in Miocene, Starfak-Tiger Shoal fields, offshore Louisiana. (a) A stratal slice
made by Zeng et al. (2001). (b) Same stratal slice extracted from 22 Hz component
of seismic data.
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Figure 8: Components of 15, 22, and 29 Hz of Starfak-Tiger Shoal stratal slice picked
and plotted using color blending, which provides more detailed information. White
bright colors indicate thicker sands; white dim colors refer to thinner sands; blue and
dark colors indicate shale. Interpreters can easily identify different depositional facies
in plot.
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CONCLUSION

Automated spectral recomposition using separable nonlinear least squares represents
the seismic spectrum as a sum of Ricker components and efficiently estimates their
peak frequencies and amplitudes. With the seismic spectrum reconstructed from
component frequencies, spectral recomposition can be used in seismic interpretation.
We adopted Ricker wavelet in the analysis because of its popularity. Other wavelets
may also be used with corresponding estimation numerical strategy.

Applying spectral recomposition, we have been able to better visualize seismic
images in both cross sections and stratal slices. This technique has improved the
interpreter’s ability to image the various elements of the depositional system in ex-
tracted stratal slices. Spectral recomposition can also be used in forward modeling,
in studying how different frequency components attenuate in the subsurface, newand
in estimating thin-bed thicknesses using tuning frequencies. It provides a robust and
phase-independent approach to seismic thickness estimation. Compared with conven-
tional methods involving adjacent peaks and troughs picking, spectral recomposition
requires only peak-frequency and amplitude estimation.
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