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ABSTRACT

Wave propagation in an anisotropic medium is inherently described by elastic
wave equations, with P- and S-wave modes intrinsically coupled. We present an
approach to simulate propagation of separated wave modes for forward modeling,
migration, waveform inversion and other applications in general anisotropic me-
dia. The proposed approach consists of two cascaded computational steps. First,
we simulate equivalent elastic anisotropic wavefields with a minimal second-order
coupled system (that we call here a pseudo-pure-mode wave equation), which de-
scribes propagation of all wave modes with a partial wave mode separation. Such
a system for qP-wave is derived from the inverse Fourier transform of the Christof-
fel equation after a similarity transformation, which aims to project the original
vector displacement wavefields onto isotropic references of the polarization di-
rections of qP-waves. It accurately describes the kinematics of all wave modes
and enhances qP-waves when the pseudo-pure-mode wavefield components are
summed. The second step is a filtering to further project the pseudo-pure-mode
wavefields onto the polarization directions of qP-waves so that residual qS-wave
energy is removed and scalar qP-wave fields are accurately separated at each time
step during wavefield extrapolation. As demonstrated in the numerical examples,
pseudo-pure-mode wave equation plus correction of projection deviation provides
a robust and flexible tool for simulating propagation of separated wave modes in
transversely isotropic and orthorhombic media. The synthetic example of Hess
VTI model shows that the pseudo-pure-mode qP-wave equation can be used in
prestack reverse-time migration (RTM) applications.

INTRODUCTION

All anisotropy arises from ordered heterogeneity much smaller than the wavelength
(Winterstein, 1990). With the increased resolution of seismic data and because of
wider seismic acquisition aperture (both with respect to offset and azimuth), there
is a growing awareness that an isotropic description of the Earth may no longer be
adequate. Anisotropy appears to be a near-ubiquitous property of earth materials,
and its effects on seismic data must be quantified.
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Wave equation is the central ingredient in characterizing wave propagation for
seismic imaging and elastic parameters inversion. In isotropic media, it is common
to use scalar acoustic wave equations to describe the propagation of seismic data as
representing only P-wave energy (Yilmaz, 2001). Compared to the elastic wave equa-
tion, the acoustic wave equation is simpler and more efficient to use, and does not
yield S-waves for modeling of P-waves. Anisotropic media are inherently described
by elastic wave equations with P- and S-wave modes intrinsically coupled. It is well
known that a S-wave passing through an anisotropic medium splits into two mutually
orthogonal waves (Crampin, 1984). Generally the P-wave and the two S-waves are not
polarized parallel and perpendicular to the wave vector, thus are called quasi-P (qP)
and qausi-S (qS) waves. However, most anisotropic migration implementations do
not use the full elastic anisotropic wave equation because of the high computational
cost involved, and the difficulties in separating wavefields into different wave modes.
Although an acoustic wave does not exist in anisotropic media, Alkhalifah (2000) in-
troduced a pseudo-acoustic approximate dispersion relation for vertically transverse
isotropic (VTI) media by setting the shear velocity along the axis of symmetry to
zero, which leads to a fourth-order partial differential equation (PDE) in space-time
domain. Following the same procedure, he also presented a pseudo-acoustic wave
equation of sixth-order in vertical orthorhombic (ORT) anisotropic media (Alkhal-
ifah, 2003). Many authors have implemented pseudo-acoustic VTI modeling and
migration based on various coupled second-order PDE systems derived from Alkhal-
ifah’s dispersion relation (Alkhalifah, 2000; Klie and Toro, 2001; Zhou et al., 2006b;
Hestholm, 2007). Alternatively, coupled first-order and second-order systems are de-
rived starting from first principles (the equations of motion and Hooke’s law) under
the pseudo-acoustic approximation for VTI media (Duveneck and Bakker, 2011) and
recently for orthorhombic media as well (Fowler and King, 2011; Zhang and Zhang,
2011). The pseudo-acoustic tilted transversely isotropic (TTI) or tilted orthorhombic
wave equations can be obtained from their pseudo-acoustic VTI (or pseudo-acoustic
vertical orthorhombic) counterparts by simply performing a coordinate rotation ac-
cording to the directions of the symmetry axes (Zhou et al., 2006a; Fletcher et al.,
2009). Pseudo-acoustic wave equations have been widely used for RTM in trans-
versely isotropic (TI) media because they describe the kinematic signatures of qP-
waves with sufficient accuracy and are simpler than their elastic counterparts, which
leads to computational savings in practice.

On the other hand, the pseudo-acoustic approximation may result in some prob-
lems in characterizing wave propagation in anisotropic media. First, to enhance com-
putational stability, pseudo-acoustic approximations reduce the freedom to choose the
material parameters compared with their elastic counterparts (Grechka et al., 2004).
Practitioners often observe instability in practice when the pseudo-acoustic equations
are used in complex TI media (Fletcher et al., 2009; Zhang et al., 2011; Bube et al.,
2012). Stable RTM implementations in TTI media can be achieved by using pseudo-
acoustic wave equations derived directly from first principles (Duveneck and Bakker,
2011) using self-adjoint or covariant derivative operators (Macesanu, 2011; Zhang
et al., 2011). Second, the widely-used pseudo-acoustic approximation still results in
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significant shear wave presence in both modeling data and RTM images (Zhang et al.,
2003; Grechka et al., 2004; Jin et al., 2011). It is not easy to get rid of qSV-waves from
the wavefields simulated by the pseudo-acoustic wave equations when a full waveform
modeling for qP-wave is required. Placing both sources and receivers into an artificial
isotropic or elliptic anisotropic acoustic layer could eliminate many of the undesired
qSV-wave energy (Alkhalifah, 2000), but the propagated qP-wave may get converted
to qSV-wave and the qSV-wave might get converted back to qP-wave in other por-
tions of the model. A projection filtering based on an approximate representation of
characteristic-waveform of qP-waves was suggested to suppress undesired qSV-wave
energy at each output time step (Zhang et al., 2009). But qS-wave artifacts still
remain and qP-wave amplitudes may be not correctly restored due to the approxima-
tion introduced in the used wave equation. To avoid the qSV-wave energy completely,
different approaches have recently been proposed to model the pure qP-wave propa-
gation in VTI and TTI media. The optimized separable approximation (Liu et al.,
2009; Zhang and Zhang, 2009; Du et al., 2010), the pseudo-analytical method (Et-
gen and Brandsberg-Dahl, 2009), the low-rank approximation (Fomel et al., 2013),
the Fourier finite-difference method (Song and Fomel, 2011) and the rapid expansion
method (Pestana and Stoffa, 2010) belong to this category.

In fact, anisotropic phenomena are especially noticeable in shear and mode-converted
wavefields. Therefore, modeling of anisotropic shear waves may be important both on
theoretical and practical aspects. Liu et al. (2009) factorized the pseudo-acoustic VTI
dispersion relation and obtained two pseudo-partial differential (PPD) equations, of
which the qP-wave equation is well-posed for any value of the anisotropic parame-
ters, but the qSV-wave equation becomes well-posed only when the condition ε > δ is
satisfied. These PPD equations are very hard to solve in heterogeneous media unless
further approximations are introduced (Liu et al., 2009; Chu et al., 2011) or recently
developed FFT-based approaches are used (Pestana et al., 2011; Song and Fomel,
2011; Fomel et al., 2013). Note that some of the above efforts to model pure-mode
wavefields suffer from accuracy loss more or less due to the approximations to the
phase velocities or dispersion relations. Furthermore, these pure-mode propagators
only consider the phase term in wave propagation, so they are appropriate for seismic
migration but not necessarily for accurate seismic modeling, which may require taking
account of amplitude effects and other elastic phenomena such as mode conversion.

In kinematics, there are various forms equivalent to the original first- or second-
order elastic wave equations. Mathematically, analysis of the dispersion relation as
matrix eigenvalue system allows one to generate equivalent coupled linear second-
order systems by similarity transformations (Fowler et al., 2010). Accordingly, Kang
and Cheng (2011) proposed new coupled second-order systems for both qP- and qS-
waves in TI media by applying specified similarity transformations to the Christoffel
equation. Their coupled system for qP-waves represents dominantly the energy propa-
gation of scalar qP-waves while that for qSV-waves propagates dominantly the scalar
qSV-wave energy. However, each of the two systems still contains relatively weak
residual energy of the other mode. Cheng and Kang (2012) and Kang and Cheng
(2012) called such coupled systems “pseudo-pure-mode wave equations” and further
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proposed an approach to get separated qP- or qS-wave data from the pseudo-pure-
mode wavefields in general anisotropic media. In the two articles of this series, we
demonstrate how to simulate propagation of separated wave-modes based on a new
simplified description of wave propagation in general anisotropic media. We shall
focus on qP- and qS-waves in each article separately.

The first paper is structured as follows: First, we revisit the plane-wave analysis
of the full elastic anisotropic wave equation. Then we introduce a similarity transfor-
mation to the Christoffel equation required to derive the pseudo-pure-mode qP-wave
equation, and give the simplified forms under pseudo-acoustic or/and isotropic ap-
proximations to illustrate the physical interpretation. After that, we discuss how to
obtain separated qP-wave data from the extrapolated wavefields coupled with resid-
ual qS-waves. Finally, we show numerical examples to demonstrate the features and
advantages of our approach in wavefield modeling and RTM in TI and orthorhombic
media.

PSEUDO-PURE-MODE COUPLED SYSTEM FOR
QP-WAVES

Plane-wave analysis of the elastic wave equation

Vector and component notations are used alternatively throughout the paper. The
wave equation in general heterogeneous anisotropic media can be expressed as (Car-
cione, 2001),

ρ
∂2u

∂t2
= [5C5T ]u + f , (1)

where u = (ux, uy, uz)
T is the particle displacement vector, f = (fx, fy, fz)

T represents
the force term, ρ is the density, C is the matrix representing the stiffness tensor in a
two-index notation called the Voigt recipe, and the symmetric gradient operator has
the following matrix representation:

5 =

 ∂
∂x

0 0 0 ∂
∂z

∂
∂y

0 ∂
∂y

0 ∂
∂z

0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x

0

 . (2)

Assuming that the material properties vary sufficiently slowly so that spatial deriva-
tives of the stiffnesses can be ignored, equation 1 can be simplified as

ρ
∂2u

∂t2
= Γu + f , (3)
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where Γ is the 3× 3 symmetric Christoffel differential-operator matrix, of which the
elements are given for locally smooth media as follows (Auld, 1973),

Γ11 = C11
∂2

∂x2
+ C66

∂2

∂y2
+ C55

∂2

∂z2
+ 2C56

∂2

∂y∂z
+ 2C15

∂2

∂x∂z
+ 2C16

∂2

∂x∂y
,

Γ22 = C66
∂2

∂x2
+ C22

∂2

∂y2
+ C44

∂2

∂z2
+ 2C24

∂2

∂y∂z
+ 2C46

∂2

∂x∂z
+ 2C26

∂2

∂x∂y
,

Γ33 = C55
∂2

∂x2
+ C44

∂2

∂y2
+ C33

∂2

∂z2
+ 2C34

∂2

∂y∂z
+ 2C35

∂2

∂x∂z
+ 2C45

∂2

∂x∂y
,

Γ23 = C56
∂2

∂x2
+ C24

∂2

∂y2
+ C34

∂2

∂z2
+ (C44 + C23)

∂2

∂y∂z
+ (C36 + C45)

∂2

∂x∂z

+ (C25 + C46)
∂2

∂x∂y
,

Γ13 = C15
∂2

∂x2
+ C46

∂2

∂y2
+ C35

∂2

∂z2
+ (C45 + C36)

∂2

∂y∂z
+ (C13 + C55)

∂2

∂x∂z

+ (C14 + C56)
∂2

∂x∂y
,

Γ12 = C16
∂2

∂x2
+ C26

∂2

∂y2
+ C45

∂2

∂z2
+ (C46 + C25)

∂2

∂y∂z
+ (C14 + C56)

∂2

∂x∂z

+ (C12 + C66)
∂2

∂x∂y
.

(4)

For the most important types of seismic anisotropy such as transverse isotropy and
orthorhombic anisotropy, some terms in equation 4 vanish because the corresponding
stiffness coefficients become zeros.

Neglecting the source term, a plane-wave analysis of the elastic anisotropic wave
equation yields the Christoffel equation,

Γ̃ũ = ρω2ũ, (5)

or
(Γ̃− ρω2I)ũ = 0, (6)

where ω is the frequency, ũ = (ũx, ũy, ũz)
T is the wavefield in Fourier domain, Γ̃ =

L̃CL̃T is the symmetric Christoffel matrix, I is a 3×3 identity matrix. To support the
sign notation in equations 5 and 6, we remove the imaginary unit i of the wavenumber-
domain counterpart of the gradient operator 5 and thus express matrix L̃ as:

L̃ =

kx 0 0 0 kz ky
0 ky 0 kz 0 kx
0 0 kz ky kx 0

 . (7)

Setting the determinant of Γ̃ − ρω2I in equation 6 to zero gives the characteristic
equation, and expanding that determinant gives the (angular) dispersion relation.
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For a given spatial direction specified by a wave vector k = (kx, ky, kz)
T , the charac-

teristic equation poses a standard 3 × 3 eigenvalue problem. The three eigenvalues
correspond to the phase velocities of the qP-wave and two qS waves. Inserting one of
the eigenvalues back into the Christoffel equation gives ratios of the components of
ũ, from which the polarization or displacement direction can be determined for the
given wave mode. In general, these directions are neither parallel nor perpendicular
to the wave vector, and depend on the local material parameters for the anisotropic
medium. For a given wave vector or slowness direction, the polarization vectors of
the three wave modes are always mutually orthogonal.

Applying an inverse Fourier transform to the dispersion relation yields a high-order
PDE in time and space and contains mixed space and time derivatives. Setting the
shear velocity along the axis of symmetry to zero while using Thomsen’s parameter
notation yields the pseudo-acoustic dispersion relation and wave equation in VTI
media (Alkhalifah, 2000). Most published methods instead have used coupled PDEs
(derived from the pseudo-acoustic dispersion relation) that are only second-order in
time and eliminate the mixed space-time derivatives, e.g., Zhou et al. (2006b). Many
kinematically equivalent coupled second-order systems can be generated from the
dispersion relation by similarity transformations (Fowler et al., 2010). In the next
section, we present a particular similarity transformation to the Christoffel equation in
order to derive a minimal second-order coupled system, which is helpful for simulating
propagation of separated qP-waves in anisotropic media.

Pseudo-pure-mode qP-wave equation

To describe propagation of separated qP-waves in anisotropic media, we first revisit
the classical wave mode separation theory. In isotropic media, scalar P-wave can be
separated from the extrapolated vector wavefield u by applying a divergence opera-
tion: P = 5 · u. In the wavenumber domain, this can be equivalently expressed as a
dot product that essentially projects the wavefield ũ onto the wave vector k, i.e.,

P̃ = ik · ũ, (8)

Similarly, for an anisotropic medium, scalar qP-waves can be separated by projecting
the vector wavefields onto the true polarization directions of qP-waves by (Dellinger
and Etgen, 1990),

qP̃ = iap · ũ, (9)

where ap = (apx, apy, apz)
T represents the polarization vector for qP-waves. For hetero-

geneous models, this scalar projection can be performed using nonstationary spatial
filtering depending on local material parameters (Yan and Sava, 2009).

To provide more flexibility for characterizing wave propagation in anisotropic me-
dia, we suggest to split the one-step projection into two steps, of which the first
step implicitly implements partail wave mode separation (like in equation 8) during
wavefield extrapolation with a transformed wave equation, while the second step is
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designed to correct the projection deviation implied by equations 8 and 9. We achieve
this on the base of the following observations: the difference of the polarization be-
tween an ordinary anisotropic medium and its isotropic reference at a given wave
vector direction is usually small, though exceptions are possible (Thomsen, 1986;
Tsvankin and Chesnokov, 1990); The wave vector can be taken as the isotropic refer-
ence of the polarization vector for qP-waves; It is a material-independent operation
to project the elastic wavefield onto the wave vector.

Therefore, we introduce a similarity transformation to the Christoffel matrix, i.e.,

Γ̃ = MpΓ̃Mp
−1, (10)

with a invertible 3× 3 matrix Mp related to the wave vector:

Mp =

ikx 0 0
0 iky 0
0 0 ikz

 . (11)

Accordingly, we derive an equivalent Christoffel equation,

Γ̃ũ = ρω2ũ, (12)

for a transformed wavefield:
ũ = Mpũ. (13)

The above similarity transformation does not change the eigeinvalues of the Christof-
fel matrix and thus introduces no kinematic errors for the wavefields. By the way,
we can obtain the same transformed Christoffel equation if matrix Mp is constructed
using the normalized wavenumbers to ensure all spatial frequencies are uniformly
scaled. For a locally smooth medium, applying an inverse Fourier transform to equa-
tion 12, we obtain a coupled linear second-order system kinematically equivalent to
the original elastic wave equation:

ρ
∂2u

∂t2
= Γu, (14)

where u represents the time-space domain wavefields, and Γ represents the Christoffel
differential-operator matrix after the similarity transformation.

For the transformed elastic wavefield in the wavenumber-domain, we have

ũ = ũx + ũy + ũz = ik · ũ. (15)

And in space-domain, we also have

u = ux + uy + uz = 5 · u, (16)

with

ux =
∂ux
∂x

, uy =
∂uy
∂y

, and uz =
∂uz
∂z

. (17)
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These imply that the new wavefield components essentially represent the spatial
derivatives of the original components of the displacement wavefield, and the transfor-
mation (equation 13) plus the summation of the transformed wavefield components
(like in equation 15 or 16) essentially finishes a scalar projection of the displace-
ment wavefield onto the wave vector. For isotropic media, such a projection directly
produces scalar P-wave data. In an anisotropic medium, however, only a partial wave-
mode separation is achieved becuase there is usually a direction deviation between the
wave vector and the polarization vector of qP-wave. Generally, this deviation turns
out to be small and its maximum value rarely exceeds 20◦ for typical anisotropic earth
media(Psencik and Gajewski, 1998). Because of the orthognality of qP- and qS-wave
polarizations, the projection deviations of qP-waves are generally far less than those of
the qSV-waves when the elastic wavefields are projected onto the isotropic references
of the qP-wave’s polarization vectors. As demonstrated in the synthetic examples of
various symmetry and strength of anisotropy, the scalar wavefield u represents dom-
inantly the energy of qP-waves but contains some weak residual qS-waves. This is
why we call the coupled system (equation 14) a pseudo-pure-mode wave equation for
qP-wave in anisotropic media.

Substituting the corresponding stiffness matrix into the above derivations, we get
the extended expression of pseudo-pure-mode qP-wave equation for any anisotropic
media. As demonstrated in Appendix A, pseudo-pure-mode qP-wave equation in
vertical TI and orthorhombic media can be expressed as

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C66
∂2ux
∂y2

+ C55
∂2ux
∂z2

+ (C12 + C66)
∂2uy
∂x2

+ (C13 + C55)
∂2uz
∂x2

,

ρ
∂2uy
∂t2

= C66
∂2uy
∂x2

+ C22
∂2uy
∂y2

+ C44
∂2uy
∂z2

+ (C12 + C66)
∂2ux
∂y2

+ (C23 + C44)
∂2uz
∂y2

,

ρ
∂2uz
∂t2

= C55
∂2uz
∂x2

+ C44
∂2uz
∂y2

+ C33
∂2uz
∂z2

+ (C13 + C55)
∂2ux
∂z2

+ (C23 + C44)
∂2uy
∂z2

.

(18)

Note that, unlike the original elastic wave equation, pseudo-pure-mode wave equation
dose not contain mixed partial derivatives. This is a good news because it takes more
computational cost to compute the mixed partial derivatives using a finite-difference
algorithm with required accuracy. In the forthcoming text, we focus on demonstration
of pseudo-pure-mode qP-wave equations for TI media while briefly supplement similar
derivation for orthorhombic media in Appendix B.

Pseudo-pure-mode qP-wave equation in VTI media

For a VTI medium, there are only five independent parameters: C11, C33, C44, C66

and C13, with C12 = C11 − 2C66, C22 = C11, C23 = C13 and C55 = C44. So we rewrite
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equation 18 as,

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C66
∂2ux
∂y2

+ C44
∂2ux
∂z2

+ (C11 − C66)
∂2uy
∂x2

+ (C13 + C44)
∂2uz
∂x2

,

ρ
∂2uy
∂t2

= C66
∂2uy
∂x2

+ C11
∂2uy
∂y2

+ C44
∂2uy
∂z2

+ (C11 − C66)
∂2ux
∂y2

+ (C13 + C44)
∂2uz
∂y2

,

ρ
∂2uz
∂t2

= C44
∂2uz
∂x2

+ C44
∂2uz
∂y2

+ C33
∂2uz
∂z2

+ (C13 + C44)
∂2ux
∂z2

+ (C13 + C44)
∂2uy
∂z2

.

(19)

Since a TI material has cylindrical symmetry in its elastic properties, it is safe to
sum the first two equations in equation 19 to yield a simplified form for wavefield
modeling and RTM, namely

ρ
∂2uxy
∂t2

= C11(
∂2

∂x2
+

∂2

∂y2
)uxy + C44

∂2uxy
∂z2

+ (C13 + C44)(
∂2

∂x2
+

∂2

∂y2
)uz,

ρ
∂2uz
∂t2

= C44(
∂2

∂x2
+

∂2

∂y2
)uz + C33

∂2uz
∂z2

+ (C13 + C44)
∂2uxy
∂z2

,

(20)

where uxy = ux + uy represents the sum of the two horizontal components. Pure SH-
waves horizontally polarize in the isotropic planes of VTI media with the polarization
given by (−ky, kx, 0), which implies ikxũx + ikyũy = 0, i.e., uxy = 0, for the SH-wave.
Therefore, the above partial summation (after the first-step projection) completes
divergence operation and removes the SH-waves from the three-component pseudo-
pure-mode qP-wave fields. As a result, there are no terms related to C66 any more
in equation 20. Compared with original elastic wave equation, equation 20 further
reduces the compuational costs for 3D wavefield modeling and RTM for VTI media.

Applying the Thomsen notation (Thomsen, 1986),

C11 = (1 + 2ε)ρv2
p0,

C33 = ρv2
p0,

C44 = ρv2
s0,

(C13 + C44)
2 = ρ2(v2

p0 − v2
s0)(v

2
pn − v2

s0),

(21)

the pseudo-pure-mode qP-wave equation can be expressed as,

∂2uxy
∂t2

= v2
px(

∂2

∂x2
+

∂2

∂y2
)uxy + v2

s0

∂2uxy
∂z2

+
√

(v2
p0 − v2

s0)(v
2
pn − v2

s0)(
∂2

∂x2
+

∂2

∂y2
)uz,

∂2uz
∂t2

= v2
s0(

∂2

∂x2
+

∂2

∂y2
)uz + v2

p0

∂2uz
∂z2

+
√

(v2
p0 − v2

s0)(v
2
pn − v2

s0)
∂2uxy
∂z2

,

(22)

where vp0 and vs0 represent the vertical velocities of qP- and qSV-waves, vpn =
vp0
√

1 + 2δ represents the interval NMO velocity, vpx = vp0
√

1 + 2ε represents the
horizontal velocity of qP-waves, δ and ε are the other two Thomsen coefficients. Un-
like other coupled second-order systems derived from the dispersion relation of VTI
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media (Zhou et al., 2006b), the wavefield components in equations 20 and 22 have
clear physical meaning and their summation automatically produces scalar wavefields
dominant of qP-wave energy. Equation 22 is also similar to a minimal coupled system
(equation 30 in their paper) demonstrated by Fowler et al. (2010), except that it is
now derived from a significant similarity transformation that helps to enhance qP-
waves and suppress qS-waves (after summing the transformed wavefield components).
This is undoubtedly useful for migration of conventional seismic data representing
mainly qP-wave data.

We can also obtain a pseudo-acoustic coupled system by setting vs0 = 0 in equa-
tion 22, namely:

∂2uxy
∂t2

= (1 + 2ε)v2
p0(

∂2

∂x2
+

∂2

∂y2
)uxy +

√
1 + 2δv2

p0(
∂2

∂x2
+

∂2

∂y2
)uz,

∂2uz
∂t2

= v2
p0

∂2uz
∂z2

+
√

1 + 2δv2
p0

∂2uxy
∂z2

.

(23)

The pseudo-acoustic approximation does not significantly affect the kinematic signa-
tures but may distort the reflection, transmission and conversion coefficients (thus
the amplitudes) of waves in elastic media.

If we further apply the isotropic assumption (seting δ = 0 and ε = 0) and sum
the two equations in equation 23, we get the familar constant-density acoustic wave
equation:

∂2u

∂t2
= v2

p(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
)u, (24)

where u = uxy + uz represents the acoustic pressure wavefield, and vp is the propaga-
tion velocity of isotropic P-wave.

Pseudo-pure-mode qP-wave equation in TTI media

In the case of transversely isotropic media with a tilted symmetry axis, the elastic
tensor loses its simple form. Written in Voigt notation, it contains nonzero entries
in all four quadrants if expressed in global Cartesian coordinates x = (x, y, z). The
generalization of pseudo-pure-mode wave equation to a tilted symmetry axis involves
no additional physics but greatly complicates the algebra. One strategy to derive the
wave equations in TTI media is to locally rotate the coordinate system so that its
third axis coincides with the symmetry axis, and make use of the simple form in VTI
media.

We introduce a transformation to a rotated coordinate system x̂ = (x̂, ŷ, ẑ),

x̂ = RTx, (25)

where the rotation matrix R is dependent on the tilt angle θ and the azimuth ϕ of
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the symmetry axis, namely,

R =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 . (26)

So,

r11 = cos θ cosϕ,

r12 = − sinϕ,

r13 = − sin θ cosϕ,

r21 = cos θ sinϕ,

r22 = cosϕ,

r23 = − sin θ sinϕ,

r31 = sin θ,

r32 = 0,

r33 = cos θ.

(27)

Assuming that the rotation operator R varies slowly so that its spatial derivatives can
be ignored, the second-order differential operators in the rotated coordinate system
aligned with the symmetry axis are given as:

∂2

∂x̂2
= r2

11

∂2

∂x2
+ r2

21

∂2

∂y2
+ r2

31

∂2

∂z2
+ 2r11r21

∂2

∂x∂y
+ 2r11r31

∂2

∂x∂z
+ 2r21r31

∂2

∂y∂z
,

∂2

∂ŷ2
= r2

12

∂2

∂x2
+ r2

22

∂2

∂y2
+ r2

32

∂2

∂z2
+ 2r12r22

∂2

∂x∂y
+ 2r12r32

∂2

∂x∂z
+ 2r22r32

∂2

∂y∂z
,

∂2

∂ẑ2
= r2

13

∂2

∂x2
+ r2

23

∂2

∂y2
+ r2

33

∂2

∂z2
+ 2r13r23

∂2

∂x∂y
+ 2r13r33

∂2

∂x∂z
+ 2r23r33

∂2

∂y∂z
.

(28)

Substituting these differential operators into the pseudo-pure-mode qP-wave equation
of VTI media yields the pseudo-pure-mode qP-wave equation for TTI media in the
global Cartesian coordinates. Likewise, the pseudo-pure-mode qP-wave equation in
TTI media can be further simplified by applying the pseudo-acoustic approximation.
We must mention that, the above coordinate rotation in deriving the wave equations
for TTI and tilted orthorhombic media (see Appendix B) should be improved to
enhance numerical stability according to some significant insights provided in recent
literatures (Duveneck and Bakker, 2011; Macesanu, 2011; Zhang et al., 2011; Bube
et al., 2012).

CORRECTION OF PROJECTION DEVIATION TO
REMOVE QS-WAVES

According to the theory of wave mode separation in anisotropic media, one needs
to project the elastic wavefields onto the polarization direction to get the separated
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wavefields of the given mode (Dellinger and Etgen, 1990). Mathematically, this can
be implemented through a dot product of the original vector wavefields and the po-
larization vector in the wavenumber domain (Dellinger and Etgen, 1990) or apply-
ing pseudo-derivative operators to the vector wavefields in the space-domain (Yan
and Sava, 2009). However, the pseudo-pure-mode qP-wave equations are derived by
a similarity transformation aiming to project the displacement wavefield onto the
isotropic reference of qP-wave’s polarization vector. A partial mode separation has
been automatically achieved during wavefield extrapolation using the pseudo-pure-
mode qP-wave equations. For typical anisotropic earth media, thanks to the small
departure of qP-wave’s polarization direction from its isotropic reference, the resulting
pseudo-pure-mode wavefields are dominated by qP-wave energy and contaminated by
residual qS-waves. To achieve a complete mode separation, we should further correct
the projection deviations resulting from the differences between polarization and its
isotropic reference. In other words, we split the conventional one-step wave mode
separation for anisotropic media (Dellinger and Etgen, 1990; Yan and Sava, 2009)
into two steps, of which the first one is implicitly achieved during extrapolating the
pseudo-pure-mode wavefields and the second one is implemented after that using the
approach that we will present immediately.

Taking VTI as an example, the deviation angle ζ between the polarization and
propagation directions has a complicated nonlinear relation with anisotropic param-
eters and the phase angle (see Appendix C). According to its expression for weak
anisotropic VTI media (Rommel, 1994; Tsvankin, 2001), it seems that the deviation
is mainly affected by the difference between ε and δ, the magnitude of δ (when ε− δ
stays the same) and the ratio of vertical velocities of qP- and qS-wave, as well as
the phase angle. It is possible to design a filtering algorithm to suppress the residual
qS-waves using the deviation angle given under the assumption of weak anisotropy.
To completely remove the residual qS-waves and correctly separate the qP-waves for
arbitrary anisotropy, we propose an accurate correction approach according to the
deviation between polarization and wave vectors.

Considering equations 8, 9, 13, and 15, we first decompose the polarization vector
of qP-wave ap as follows:

ap = Epk, (29)

where the deviation operator satisfies,

Ep =

apx

kx
0 0

0 apy

ky
0

0 0 apz

kz

 . (30)

This matrix can be constructed once the qP-wave polarization directions are deter-
mined based on the local medium properties at a grid point. For TI media, there
are analytical expressions for the qP-wave polarization vectors (Dellinger, 1991). For
other anisotropic media with lower symmetry (such as orthorhombic media), we have
to numerically compute the polarization vectors using the Christoffel equation.
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Then we correct the pseudo-pure-mode qP-wave fields ũ = (ũx, ũy, ũz)
T using a

wavenumber-domain filtering based on the deviation operator:

ũp = Ep · ũ, (31)

and finally extract the scalar qP-wave data using

up = upx + upy + upz (32)

after 3D inverse Fourier transforms. Here, the magnitude of the deviation operator
for a certain wavenumber k =

√
k2
x + k2

y + k2
z is a constant becuase this operator is

computed by using the normalized wave and polarization vectors in equation 30. This
ensures that for a certain wavenumber, the separated qP-waves are uniformly scaled.
More important, this correction step thoroughly removes the residual qS-wave energy.

In heterogeneous anisotropic media, the polarization directions and thus the de-
viation operators vary spatially, depending on the local material parameters. To
account for spatial variability, we propose an equivalent expression to equations 31
and 32 as a nonstationary filtering in the space domain at each location,

up = Epx(ux) + Epy(uy) + Epz(uz) (33)

where the pseudo-derivative operators Epx(·), Epy(·), and Epz(·) represent the inverse
Fourier transforms of the diagonal elements in the deviation matrix Ep.

Figure 1 displays the wavenumber-domain operators of projection onto isotropic
(reference) and anisotropic polarization vectors (namely k and ap) as well as the
corresponding deviation operator Ep for a 2D homogeneous VTI medium with vp0 =
3000m/s, vs0 = 1500m/s, ε = 0.25 and δ = −0.25. Note that Ep is not simply
the difference between k and ap, and Ep becomes the identity operator in case of
an isotropic medium. In the space-domain, projecting onto isotropic polarization
directions is equivalent to a divergence operation using partial derivative operators,
while projection onto polarization directions of qP-waves use operators that have the
character of pseudo-derivative operators, due to anisotropy (see Figure 2). Figure 3
shows that the variation of the anisotropy changes the deviation operators greatly.
The weaker the anisotropy, the more compact the deviation operators appear. The
observation is basically consistent with the equation of polarization deviation angle
for VTI media with weak anisotropy. The exact pseudo-derivative operators are very
long series in the discretized space domain. Generally, the far ends of these operators
have ignorable values even for strong anisotropy. Therefore, in practice, we could
truncate the operators to make the spatial filters short and computationally efficient.

This procedure to separate qP-waves, although accurate, is computationally ex-
pensive, especially in 3D heterogeneous media. Like the computational problem in
conventional wave mode separation from the anisotropic elastic wavefields (Yan and
Sava, 2009, 2012), the spatial filtering to separate qP-waves is significantly more ex-
pensive than extrapolating the pseudo-pure-mode wavefields. In practice, we find that
it is not necessary to apply the filtering at every time step. A larger time interval is
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allowed to save costs enormously, especially for RTM of multi-shot seismic data. Ac-
cording to our experiments, there is little difference between the two migrated images
when the filtering is applied at every one and two time step (if only the filtered wave-
fields are used in the imaging procedure), although about three-forth of the original
computational cost are saved for the filtering in the latter case. Moreover, filtering at
every three time step still produces an acceptable migrated image. We may further im-
prove the efficiency of the filtering procedure by using the algorithm that resembles the
phase-shift plus interpolation (PSPI) scheme recently used in anisotropic wave mode
separation (Yan and Sava, 2011). Alternatively, we may greatly reduce the compua-
tional cost but guarantee the accuracy using the mixed (space-wavenumber) domain
filtering algorithm based on low-rank approximation (Cheng and Fomel, 2013).

a b c

d e f

Figure 1: Normalized wavenumber-domain operators of projection onto isotropic (ref-
erence) and anisotropic polarization vectors of qP-waves, and wavenumber-domain
deviation operators in a 2D homogeneous VTI medium: k (left), ap (middle) and Ep

(right); Top: x-component, Bottom: z-component.

In kinematics, it seems that we can extract scalar qSV-wave fields from the pseudo-
pure-mode qP-wave fields u by filtering according to the projection deviation defined
by qSV-wave’s polarization and wave vector. However, unlike separation of the qP-
wave mode, the large projection deviations for qSV-wave modes would result in signif-
icant discontinuities in the wavenumber-domain correction operators and strong tails
extending off to infinity in the space domain. Accordingly, this reduces compactness
of the spatial filters, which prohibits applying the same truncation as for qP-wave
spatial filters to reduce computational cost. Computational tricks such as smoothing
may result in distorted and imcomplete separation. That is why we are developing a
similar approach to simulate propagation of separated qS-wave modes based on their
own pseudo-pure-mode wave equations and the corresponding projection deviation
corrections for anisotropic media (Kang and Cheng, 2012).
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a b c

d e f

Figure 2: Space-domain operators of projecting onto isotropic (left) and anisotropic
(middle) polarization vectors, and the corresponding deviation operators (right): Top:
x-component, Bottom: z-component. Note that the operators are tapered before
transforming into space-domain and the same gain is applied to all pictures to high-
light the differences among these operators.

a b c d e

f g h i j

Figure 3: Comparison of the spatial domain deviation operators in VTI media with
varied anisotropy strength: In all cases, vp0 = 3000m/s, vs0 = 1500m/s, and ε is fixed
as 0.2. From left to right, δ is set as 0.2, 0.1, 0, -0.1, and -0.2, respectively. Top:
x-components; Bottom: z-components. To highlight the differences,the same gain is
applied to all pictures.
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EXAMPLES

1. Simulating propagation of separated wave modes

1.1 Homogeneous VTI model

For comparison, we first appply the original anisotropic elastic wave equation to syn-
thesize wavefields in a homogeneous VTI medium with weak anisotropy, in which
vp0 = 3000m/s, vs0 = 1500m/s, ε = 0.1, and δ = 0.05. Figure 4a and 4b dis-
play the horizontal and vertical components of the displacement wavefields at 0.3
s. Then we try to simulate propagation of separated wave modes using the pseudo-
pure-mode qP-wave equation (equation 22 in its 2D form). Figure 4c and 4d display
the two components of the pseudo-pure-mode qP-wave fields, and Figure 4e displays
their summation, i.e., the pseudo-pure-mode scalar qP-wave fields with weak residual
qSV-wave energy. Compared with the theoretical wavefront curves (see Figure 4f)
calculated on the base of group velocities and angles, pseudo-pure-mode scalar qP-
wave fields have correct kinematics for both qP- and qSV-waves. We finally remove
residual qSV-waves and get completely separated scalar qP-wave fields by applying
the filtering to correct the projection deviation (Figure 4g).

a b c d

e f g

Figure 4: Synthesized wavefields in a VTI medium with weak anisotropy: (a) x-
and (b) z-components synthesized by original elastic wave equation; (c) x- and (d)
z-components synthesized by pseudo-pure-mode qP-wave equation; (e) pseudo-pure-
mode scalar qP-wave fields; (f) kinematics of qP- and qSV-waves; and (g) separated
scalar qP-wave fields.

Then we consider wavefield modeling in a homogeneous VTI medium with strong
anisotropy, in which vp0 = 3000m/s, vs0 = 1500m/s, ε = 0.25, and δ = −0.25.
Figure 5 displays the wavefield snapshots at 0.3 s synthesized by using original elas-
tic wave equation and pseudo-pure-mode qP-wave equation respectively. Note that
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the pseudo-pure-mode qP-wave fields still accurately represent the qP- and qSV-
waves’ kinematics. Although the residual qSV-wave energy becomes stronger when
the strength of anisotropy increases, the filtering step still removes these residual
qSV-waves effectively.

a b c d

e f g

Figure 5: Synthesized wavefields in a VTI medium with strong anisotropy: (a) x-
and (b) z-components synthesized by original elastic wave equation; (c) x- and (d)
z-components synthesized by pseudo-pure-mode qP-wave equation; (e) pseudo-pure-
mode scalar qP-wave fields; (f) kinematics of qP- and qSV-waves; and (g) separated
scalar qP-wave fields.

1.2 Two-layer TI model

This example demonstrates the approach on a two-layer TI model, in which the first
layer is a very strong VTI medium with vp0 = 2500m/s, vs0 = 1200m/s, ε = 0.25,
and δ = −0.25, and the second layer is a TTI medium with vp0 = 3600m/s, vs0 =
1800m/s, ε = 0.2, δ = 0.1, and θ = 30◦. The horizontal interface between the two
layers is positioned at a depth of 1.167 km. Figure 6a and 6d display the horizontal
and vertical components of the displacement wavefields at 0.3 s. Using the pseudo-
pure-mode qP-wave equation, we simulate equivalent wavefields on the same model.
Figure 6b and 6e display the two components of the pseudo-pure-mode qP-wave
fields at the same time step. Figure 6c and 6f display pseudo-pure-mode scalar qP-
wave fields and separated qP-wave fields respectively. Obviously, residual qSV-waves
(including transmmited, reflected and converted qSV-waves) are effectively removed,
and all transmitted, reflected as well as converted qP-waves are accurately separated
after the projection deviation correction.
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a b c

d e f

Figure 6: Synthesized wavefields on a two-layer TI model with strong anisotropy in the
first layer and a tilted symmetry axis in the second layer: (a) x- and (d) z-components
synthesized by original elastic wave equation; (b) x- and (e) z-components synthesized
by pseudo-pure-mode qP-wave equation; (c) pseudo-pure-mode scalar qP-wave fields;
(f) separated scalar qP-wave fields.
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1.3 BP 2007 TTI model

Next we test the approach of simulating propagation of the separated qP-wave mode
in a complex TTI model. Figure 7 shows parameters for part of the BP 2D TTI
model. The space grid size is 12.5 m and the time step is 1 ms for high-order finite-
difference operators. Here the vertical velocities for the qSV-wave are set as half of
the qP-wave velocities. Figure 8 displays snapshots of wavefield components at the
time of 1.4s synthesized by using original elastic wave equation and pseudo-pure-mode
qP-wave equation. The two pictures at the bottom represent the scalar pseudo-pure-
mode qP-wave and the separated qP-wave fileds, respectively. The correction appears
to remove residual qSV-waves and accurately separate qP-wave data including the
converted qS-qP waves from the pseudo-pure-mode wavefields in this complex model.

a b

c d

Figure 7: Partial region of the 2D BP TTI model: (a) vertical qP-wave velocity,
Thomsen coefficients (b) ε and (c) δ, and (d) the tilt angle θ.

1.4 Homogeneous 3D ORT model

Figure 9 shows an example of simulating propagation of separated qP-wave fields in a
3D homogeneous vertical ORT model, in which vp0 = 3000m/s, vs0 = 1500m/s, δ1 =
−0.1, δ2 = −0.0422, δ3 = 0.125, ε1 = 0.2, ε2 = 0.067, γ1 = 0.1, and γ2 = 0.047. The
first three pictures display wavefield snapshots at 0.5s synthesized by using pseudo-
pure-mode qP-wave equation, according to equation B-3. As shown in Figure 9d,
qP-waves again appear to dominate the wavefields in energy when we sum the three
wavefield components of the pseudo-pure-mode qP-wave fields. As for TI media, we
obtain completely separated qP-wave fields from the pseudo-pure-mode wavefields
once the correction of projection deviation is finished (Figure 9e). By the way, in
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a b

c d

e f

Figure 8: Synthesized elastic wavefields on BP 2007 TTI model using original elastic
wave equation and pseudo-pure-mode qP-wave equation respectively: (a) x- and (b) z-
components synthesized by original elastic wave equation; (c) x- and (d) z-components
synthesized by pseudo-pure-mode qP-wave equation; (e) pseudo-pure-mode scalar qP-
wave fields; (f) separated scalar qP-wave fields.
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all above examples, we find that the filtering to remove qSV-waves does not require
the numerical dispersion of the qS-waves to be limited. So there is no additional
requirement of the grid size for qS-wave propagation. The effects of grid dispersion
for the separation of low velocity qS-waves will be further investigated in the second
article of this series.

a b

c d

e

Figure 9: Synthesized wavefield snapshots in a 3D homogeneous vertical ORT
medium: (a) x-, (b) y- and (c) z-component of the pseudo-pure-mode qP-wave fields,
(d) pseudo-pure-mode scalar qP-wave fields, (e) separated scalar qP-wave fields.
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2. Reverse-time migration of Hess VTI model

Our final example shows application of the pseudo-pure-mode qP-wave equation (i.e.,
equation 22 in its 2D form) to RTM of conventional seismic data representing mainly
qP-wave energy using the synthetic data of SEG/Hess VTI model (Figure 10). In
the original data set, there is no vertical velocity model for qSV-wave, namely vs0.
For simplicity, we first get this parameter by setting vs0

vp0
= 0.5 anywhere. Figures

11a and 11b display the two components of the synthesized pseudo-pure-mode qP-
wave fields, in which the source is located at the center of the windowed region of
the original models. We observe that the summed wavefields (i.e., pseudo-pure-mode
scalar qP-wave fields) contain quite weak residual qSV-wave energy (Figure 11c). For
seismic imaging of qP-wave data, we try the finite nonzero vs0 scheme (Fletcher et al.,
2009) to suppress qSV-wave artifacts and enhance computation stability. Thanks to
superposition of multi-shot migrated data, we obtain a good RTM result (Figure 12)
using the common-shot gathers provided at http://software.seg.org, although spatial
filtering has not been used to remove the residual qSV-wave energy. This example
shows that the proposed pseudo-pure-mode qP-wave equation could be directly used
for reverse-time migration of conventional single-component seismic data.

a b

c

Figure 10: Part of SEG/Hess VTI model with parameters of (a) vertical qP-wave
velocity, Thomsen coefficients (b) ε and (c) δ.

DISCUSSION

For the general anisotropic media, qP- and qS-wave modes are intrinsically coupled.
The elastic wave equation must be solved at once to get correct kinematics and am-
plitudes for all modes. The scalar wavefields, however, are widely used with the help
of wave mode separation or by using approximate equations derived from the elastic
wave equation for many applications such as seismic imaging. As demonstrated in
the theoretical parts, the pseudo-pure-mode wave equation is derived from the elastic
wave equation through a similarity transformation to the Christoffel equation in the
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a b

c

Figure 11: Synthesized wavefields using the pseudo-pure-mode qP-wave equation in
SEG/Hess VTI model: The three snapshots are synthesized by fixing the ratio of vs0
to vp0 as 0.5. The pseudo-pure-mode qP-wave fields (c) are the sum of the (a) x- and
(b) z-components of the pseudo-pure-mode wavefields.

Figure 12: RTM of Hess VTI model using the pseudo-pure-mode qP-wave equation
with nonzero finite vs0.
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wavenumber domain. The components of the transformed wavefield essentially rep-
resent the spatial derivatives of the displacement wavefield components. This trans-
formation preserves the kinematics of wave propagation but inevitablely changes the
phases and amplitudes for qP- and qS-waves as the elastic wave mode separation pro-
cedure using divergence-like and curl-like operations (Dellinger and Etgen, 1990; Yan
and Sava, 2009; Zhang and McMechan, 2010). The filtering step to correct the pro-
jection deviation is indispensable for complete removing the residual qS-waves from
the extrapolated pseudo-pure-mode qP-wave fields. This procedure does not change
the phases and amplitudes of the scalar qP-waves because the deviation operator is
computed using the normalized wave and polarization vectors.

In fact, it is not even clear what the correct amplitudes should be for ”scalar
anisotropy”. Like the anisotropic pseudo-analytic methods (Etgen and Brandsberg-
Dahl, 2009; Fomel et al., 2013; Zhan et al., 2012; Song and Alkhalifah, 2013), the
pseudo-pure-mode wave equation may distort the reflection, transmission and conver-
sion coefficients of the elastic wavefields when there are high-frequency perturbations
in the velocity model. Therefore, the converted qP-waves remaining in the separated
qP-wave fileds only have reliable kinematics. What happens to the qP-wave’s am-
plitudes and how to make use of the converted qP-waves (for seismic imaging) on
the base of the pseudo-pure-mode qP-wave equation need further investigation in our
future research.

CONCLUSIONS

We have proposed an alternative approach to simulate propagation of separated wave
modes in general anisotropic media. The key idea is splitting the one-step wave mode
separation into two cascaded steps based on the following observations: First, the
Christoffel equation derived from the original elastic wave equation accurately repre-
sents the kinematics of all wave modes; Second, various coupled second-order wave
equations can be derived from the Christoffel equation through similarity transforma-
tions. Third, wave mode separation can be achieved by projecting the original elastic
wavefields onto the given mode’s polarization directions, which are usually calculated
based on the local material parameters using the Christoffel equation. Accordingly,
we have derived the pseudo-pure-mode qP-wave equation by applying a similarity
transformation aiming to project the elastic wavefield onto the wave vector, which
is the isotropic references of qP-wave polarization for an anisotropic medium. The
derived pseudo-pure-mode equations not only describe propagation of all wave modes
but also implicitly achieve partial mode separation once the wavefield components are
summed. As shown in the examples, the scalar pseudo-pure-mode qP-wave fields are
dominated by qP-waves while the residual qS-waves are weaker in energy, because the
projection deviations of qP-waves are generally far less than those of the qSV-waves.
Synthetic example of Hess VTI model demonstrates successful application of the
pseudo-pure-mode qP-wave equation to RTM for conventional seismic exploration.
To completely remove the residual qS-waves, a filtering step has been proposed to
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correct the projection deviations resulting from the difference between polarization
direction and its isotropic reference. In homogeneous media, it can be efficiently im-
plemented by applying wavenumber domain filtering to each wavefield component.
In heterogeneous media, nonstationary spatial filtering using pseudo-derivative op-
erators are applied to finish the second step for wave mode separation. In a word,
pseudo-pure-mode wave equations plus corrections of projection deviations provide
us an efficient and flexible tool to simulate propagation of separated wave modes in
anisotropic media.

In spite of the amplitude properties, this approach has some advantages over the
classical solution combining elastic wavefield extrapolation and wave mode separation:
First, the pseudo-pure-mode wave equations could be directly used for migration
of seismic data recorded with single-component geophones without computationally
expensive wave mode separation (as shown in the last example). Second, because
partial wave mode separation is automatically achieved during wavefield extrapolation
and the correction step to remove the residual qS-waves is optional depending on the
strength of anisotropy, our approach provides better flexibilty for seismic modeling,
migration and parameter inversion in practice; Third, computational cost is reduced
at least one third for the 2D cases if the finite difference algorithms are used thanks
to the simpler structure of pseudo-pure-mode wave equations (i.e., having no mixed
derivative terms for VTI and vertically orthorhombic media). For the 3D TI media,
computational cost is further reduced about one third because two instead of three
equations are used to simulate wave propagation.

Unlike the pseudo-acoustic wave equations, pseudo-pure-mode wave equations
have no approximation in kinematics and allow for ε < δ provided that the stiffness
tensor is positive-definite. Moreover, they provide a possibility to extract artifact-
free separated wave mode during wavefield extrapolation. Although we focus on
propagation of separated qP-waves using the pseudo-pure-mode qP-wave equation,
our approach also works for qS-waves in TI media. This will be demonstrated in the
second paper of this series.
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APPENDIX A

PSEUDO-PURE-MODE QP-WAVE EQUATION FOR
VERTICAL TI AND ORTHORHOMBIC MEDIA

For vertical TI and orthorhombic media, the stiffness tensors have the same null
components and can be represented in a two-index notation (Musgrave, 1970) often
called the Voigt notation as

C =


C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

 . (A-1)

For vertical orthorhombic tensor, the nine coefficients are indepedent, but the VTI
tensor has only five independent coefficients with C12 = C11 − 2C66, C22 = C11,
C23 = C13 and C55 = C44. The stability condition requires these parameters to
satisfy the corresponding constraints (Helbig, 1994; Tsvankin, 2001). According to
equations 3 and 4, the full elastic wave equation without the source terms is expressed
as:

ρ
∂2ux
∂t2

= C11
∂2ux
∂x2

+ C66
∂2ux
∂y2

+ C55
∂2ux
∂z2

+ (C12 + C66)
∂2uy
∂x∂y

+ (C13 + C55)
∂2uz
∂x∂z

,

ρ
∂2uy
∂t2

= C66
∂2uy
∂x2

+ C22
∂2uy
∂y2

+ C44
∂2uy
∂z2

+ (C12 + C66)
∂2ux
∂x∂y

+ (C23 + C44)
∂2uz
∂y∂z

,

ρ
∂2uz
∂t2

= C55
∂2uz
∂x2

+ C44
∂2uz
∂y2

+ C33
∂2uz
∂z2

+ (C13 + C55)
∂2ux
∂x∂z

+ (C23 + C44)
∂2uy
∂y∂z

.

(A-2)

Thus the corresponding Christoffel matrix in wavenumber domain satisfies

Γ̃ =

C11kx
2 + C66ky

2 + C55kz
2 (C12 + C66)kxky (C13 + C55)kxkz

(C12 + C66)kxky C66kx
2 + C22ky

2 + C44kz
2 (C23 + C44)kykz

(C13 + C55)kxkz (C23 + C44)kykz C55kx
2 + C44ky

2 + C33kz
2

 .

(A-3)
According to equation 10, the Christoffel matrix after the similarity transformation
is given as,

Γ̃ =

C11kx
2 + C66ky

2 + C55kz
2 (C12 + C66)kx

2 (C13 + C55)kx
2

(C12 + C66)ky
2 C66kx

2 + C22ky
2 + C44kz

2 (C23 + C44)ky
2

(C13 + C55)kz
2 (C23 + C44)kz

2 C55kx
2 + C44ky

2 + C33kz
2

 .

(A-4)
Finally, we obtain the pseudo-pure-mode qP-wave equation (i.e., equation 18) by
inserting equation A-4 into equation 12 and applying an inverse Fourier transform.
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APPENDIX B

PSEUDO-PURE-MODE QP-WAVE EQUATION IN
ORTHORHOMBIC MEDIA

One of the most common reasons for orthorhombic anisotropy in sedimentary basins
is a combination of parallel vertical fractures and vertically transverse isotropy in the
background medium (Wild and Crampin, 1991; Schoenberg and Helbig, 1997). Verti-
cally orthorhombic models have three mutually orthogonal planes of mirror symmetry
that coincide with the coordinate planes [x1, x2], [x1, x3] and [x2, x3]. Here we assume
x1 axis is the x-axis (and used as the symmetry axis), x2 the y-axis, and x3 the z-axis.
Using the Thomsen-style notation for orthorhombic media (Tsvankin, 1997):

vp0 =

√
C33

ρ
,

vs0 =

√
C55

ρ
,

ε1 =
C22 − C33

2C33

,

δ1 =
(C23 + C44)

2 − (C33 − C44)
2

2C33(C33 − C44)
,

γ1 =
C66 − C55

2C55

,

ε2 =
C11 − C33

2C33

,

δ2 =
(C13 + C55)

2 − (C33 − C55)
2

2C33(C33 − C55)
,

γ2 =
C66 − C44

2C44

,

δ3 =
(C12 + C66)

2 − (C11 − C66)
2

2C11(C11 − C66)
,

(B-1)

and

vpx1 = vp0
√

1 + 2ε1,

vpx2 = vp0
√

1 + 2ε2,

vsx1 = vs0
√

1 + 2γ1,

vsx2 = vs0
√

1 + 2γ2,

vpn1 = vp0
√

1 + 2δ1,

vpn2 = vp0
√

1 + 2δ2,

vpn3 = vp0
√

1 + 2δ3,

(B-2)
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the pseudo-pure-mode qP-wave equation (equation 18) is rewritten as,

∂2ux
∂t2

= v2
px2

∂2ux
∂x2

+ v2
sx1

∂2ux
∂y2

+ v2
s0

∂2ux
∂z2

+
√

(v2
px2 − v2

sx1)[(1 + 2ε2)v2
pn3 − v2

sx1]
∂2uy
∂x2

+
√

(v2
p0 − v2

s0)(v
2
pn2 − v2

s0)
∂2uz
∂x2

,

∂2uy
∂t2

= v2
sx1

∂2uy
∂x2

+ v2
px1

∂2uy
∂y2

+ v2
s12

∂2uy
∂z2

+
√

(v2
px2 − v2

sx1)[(1 + 2ε2)v2
pn3 − v2

sx1]
∂2ux
∂y2

+
√

(v2
p0 − v2

s12)(v
2
pn1 − v2

s12)
∂2uz
∂y2

,

∂2uz
∂t2

= v2
s0

∂2uz
∂x2

+ v2
s12

∂2uz
∂y2

+ v2
p0

∂2uz
∂z2

+
√

(v2
p0 − v2

s0)(v
2
pn2 − v2

s0)
∂2ux
∂z2

+
√

(v2
p0 − v2

s12)(v
2
pn1 − v2

s12)
∂2uy
∂z2

,

(B-3)

where vp0 represents the vertical velocity of qP-wave, vs0 represents the vertical ve-
locity of qS-waves polarized in the x1 direction, ε1, δ1 and γ1 represent the VTI
parameters ε, δ and γ in the [y, z] plane, ε2, δ2 and γ2 represent the VTI parameters
ε, δ and γ in the [x, z] plane, δ3 represents the VTI parameter δ in the [x, y] plane.
vpx1 and vpx2 are the horizontal velocities of qP-wave in the symmetry planes normal
to the x- and y-axis, respectively. vpn1, vpn2 and vpn3 are the interval NMO velocities

in the three symmetry planes, and vs12 = vs0

√
1+2γ1
1+2γ2

.

Setting vs0 = 0, we further obtain the pseudo-acoustic coupled system in a verti-
cally orthorhombic media,

∂2ux
∂t2

= v2
px2

∂2ux
∂x2

+ (1 + 2ε2)
√

1 + 2δ3v
2
p0

∂2uy
∂x2

+
√

1 + 2δ2v
2
p0

∂2uz
∂x2

,

∂2uy
∂t2

= (1 + 2ε2)
√

1 + 2δ3v
2
p0

∂2ux
∂y2

+ (1 + 2ε1)v
2
p0

∂2uy
∂y2

+
√

1 + 2δ1v
2
p0

∂2uz
∂y2

,

∂2uz
∂t2

=
√

1 + 2δ2v
2
p0

∂2ux
∂z2

+
√

1 + 2δ1v
2
p0

∂2uy
∂z2

+ v2
p0

∂2uz
∂z2

.

(B-4)

Note that this equation does not contain any of the parameters γ1 and γ2 that describe
the shear-wave velocities in the directions of the x- and y-axis, respectively. Evidently,
kinematic signatures of qP-waves in pseudo-acoustic orthorhombic media depend on
just five anisotropic coefficients (ε1, ε2, δ1, δ2 and δ3) and the vertical velocity vp0.

In the presence of dipping fracture, we need to extend the vertically orthorhombic
symmetry to a more complex form, i.e. orthorhombic media with tilted symmetry
planes. Similar to TTI media, we locally rotate the coordinate system to make use of
the simple form of the pseudo-pure-mode wave equations in vertically orthorhombic
media. Since the physical properties are not symmetric in the local [x1;x2] plane,
we need three angles to describe the rotation (Zhang and Zhang, 2011). Two angles,
θ and ϕ, are used to define the vertical axis at each spatial point as we did for the
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symmetry axis in TTI model. The third angle α is introduced to rotate the stiffness
tensor on the local plane and to represent the orientation of the fracture system in a
VTI background or the orientation of the first fracture system of two orthogonal ones
in an isotropic background.

The second-order differential operators in the rotated coordinate system are ex-
pressed in the same forms as in equation 28, but the rotation matrix is now given
by,

R =

cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

  cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 cosα − sinα 0
sinα cosα 0

0 0 1

 , (B-5)

where

r11 = cos θ cosϕ cosα− sinϕ sinα,

r12 = − cos θ cosϕ sinα− sinϕ cosα,

r13 = sin θ cosϕ,

r21 = cos θ sinϕ cosα + cosϕ sinα,

r22 = − cos θ sinϕ sinα + cosϕ cosα,

r23 = sin θ sinϕ,

r31 = − sin θ cosα,

r32 = sin θ sinα,

r33 = cos θ.

(B-6)

Substituting the second-order differential operators into the rotated coordinate system
for those in the pseudo-pure-mode qP-wave equation of vertically orthorhombic media
yields the pseudo-pure-mode qP-wave equation of tilted orthorhombic media in the
global Cartesian coordinates.

APPENDIX C

DEVIATION BETWEEN PHASE NORMAL AND
POLARIZATION DIRECTION OF QP-WAVES IN VTI

MEDIA

For VTI media, Dellinger (1991) presents an expression of the deviation angle ζ
between the phase normal (with phase angle ψ) and the polarization direction of
qP-waves, namely

sin2(ζ) =
1

2
+

[(2s− 1)t1 − t2]
√
t21 − t2χ

2(t2χ− t12)
, (C-1)
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where

s = sin2(ψ),

t1 = s(C33 + C11 − 2C44)− C33 + C44

= sρ[v2
p0 + (1 + 2ε)v2

p0 − 2v2
s0]− ρv2

p0 + ρv2
s0,

t2 = 4s(s− 1)χ,

χ = C13 + C44

= ρ
√

(v2
p0 − v2

s0)(v
2
pn − v2

s0).

(C-2)

Equation C-1 indicates that the deviation angle has a complicated nonlinear relation
with anisotropic parameters and the phase angle. The relationship is rather lengthy
and does not easily reveal the features caused by anisotropy. Hence we use an al-
ternative expression under a weak anisotropy assumption (Rommel, 1994; Tsvankin,
2001),

ζ =
[δ + 2(ε− δ) sin2 ψ] sin 2ψ

2(1− v2s0
v2p0

)
(C-3)

It appears that the deviation angle is mainly affected by the difference between ε and
δ, the magnitude of δ (when ε− δ stays the same) and the ratio of vertical velocities
of qP- and qS-wave, as well as the phase angle.
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