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ABSTRACT

GPU has become a booming technology in reverse time migration (RTM) to per-
form the intensive computation. Compared with saving forward modeled wave-
field on the disk, RTM via wavefield reconstruction using saved boundaries on
device is a more efficient method because computation is much faster than CPU-
GPU data transfer. In this paper, we introduce the effective boundary saving
strategy in backward reconstruction for RTM. The minimum storage require-
ment for regular and staggered grid finite difference is determined for perfect
reconstruction of the source wavefield. Particularly, we implement RTM using
GPU programming, combining staggered finite difference scheme with convolu-
tional perfectly matched layer (CPML) boundary condition. We demonstrate the
validity of the proposed approach and CUDA codes with numerical example and
imaging of benchmark models.

INTRODUCTION

One-way equation based imaging techniques are inadequate to obtain accurate images
in complex media due to propagation direction changes in the background model
(Biondi, 2006). These approaches are extremely limited when handling the problems
of turning waves in the model containing sharp wave-speed contrasts and steeply
dipping reflectors. As an advanced imaging technology without dip and extreme
lateral velocity limitation, reverse time migration (RTM) was proposed early (Baysal
et al., 1983; McMechan, 1983), but not practical in terms of stringent computation
and memory requirement. However, it gained increasingly attention in recent years
due to the tremendous advances in computer capability. Until recently, 3D prestack
RTM is now feasible to obtain high fidelity images (Yoon et al., 2003; Guitton et al.,
2006).

Nowadays, graphics processing unit (GPU) is a booming technology, widely used
to mitigate the computational drawbacks in seismic imaging and inversion, from one-
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way depth migration (Liu et al., 2012b; Lin and Wang, 2012) to two-way RTM (Hus-
sain et al., 2011; Micikevicius, 2009; Clapp et al., 2010), from 2D to 3D (Micikevicius,
2009; Abdelkhalek et al., 2009; Foltinek et al., 2009; Liu et al., 2013a; Michéa and
Komatitsch, 2010), from acoustic media to elastic media (Weiss and Shragge, 2013),
from isotropic media to anisotropy (Guo et al., 2013; Suh and Wang, 2011; Liu et al.,
2009). The investigators have studied many approaches: the Fourier integral method
(Liu et al., 2012c), spectral element method (Komatitsch et al., 2010b), finite el-
ement method (Komatitsch et al., 2010a) as well as the rapid expansion method
(REM) with pseudo-spectral approach (Kim et al., 2013). A variety of applications
were conducted, for instance, GPU-based RTM denoising (Ying et al., 2013), itera-
tive velocity model building (Ji et al., 2012), multi-source RTM (Boonyasiriwat et al.,
2010), as well as least-square RTM (Leader and Clapp, 2012).

The superior speedup performance of GPU-based imaging and inversion has been
demonstrated by numerous studies. One key problem of GPU-based RTM is that the
computation is much faster while the data exchange between host and device always
takes longer time. Many researchers choose to reconstruct the source wavefield instead
of storing the modeling time history on the disk, just saving the boundaries. Unlike
most GPU-based imaging and inversion studies, this paper is devoted to the practical
technical issues instead of speedup performance. Starting from the computational
strategies by Dussaud et al. (2008), we determine the minimum storage requirement in
backward wavefield reconstruction for regular and staggered grid finite difference. We
implement RTM with staggered finite difference scheme combined with convolutional
perfectly matched layer (CPML) boundary condition using GPU programming. We
demonstrate the validity of the proposed approach and CUDA codes with numerical
test and imaging of benchmark models.

OVERVIEW OF RTM AND ITS COMPUTATION

In the case of constant density, the acoustic wave equation is written as

1

v2(x)

∂2p(x, t; xs)

∂t2
= ∇2p(x, t; xs) + f(t)δ(x− xs), (1)

where p(x, t; xs) is the wavefield excited by the source at the position x = xs, v(x)
stands for the velocity in the media, ∇2 = ∇ ·∇ = ∂xx + ∂zz, f(t) denotes the source
signature. For the convenience, we eliminate the source term hereafter and use the
notation ∂u = ∂

∂u
and ∂uu = ∂

∂u2 , u = x, z. The forward marching step can be specified
after discretization as

pk+1 = 2pk − pk−1 + v2∆t2∇2pk. (2)

Based on the wave equation, the principle of RTM imaging can be interpreted as
the cross-correlation of two wavefields at the same time level, one computed by for-
ward time recursion, the other computed by backward time stepping (Symes, 2007).
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Mathematically, the cross-correlation imaging condition can be expressed as

I(x) =
ns∑

s=1

∫ tmax

0

dt

ng∑
g=1

ps(x, t; xs)pg(x, t; xg), (3)

where I(x) is the migrated image at point x; and ps(·) and pg(·) are the source
wavefield and receiver (or geophone) wavefield. The normalized cross-correlation
imaging condition is designed by incorporating illumination compensation:

I(x) =
ns∑

s=1

∫ tmax

0
dt
∑ng

g=1 ps(x, t; xs)pg(x, t; xg)∫ tmax

0
dtps(x, t; xs)ps(x, t; xs)

. (4)

There are some possible ways to do RTM computation. The simplest one may be
just storing the forward modeled wavefields on the disk, and reading them for imag-
ing condition in the backward propagation steps. This approach requires frequent
disk I/O and has been replaced by wavefield reconstruction method. The so-called
wavefield reconstruction method is a way to recover the wavefield via backward re-
constructing or forward remodeling, using the saved wavefield snaps and boundaries.
It is of special value for GPU computing because saving the data in device variables
eliminates data transfer between CPU and GPU. By saving the last two wavefield
snaps and the boundaries, one can reconstruct the wavefield of every time step, in
time-reversal order. The checkpointing technique becomes very useful to further re-
duce the storage (Symes, 2007; Dussaud et al., 2008). Of course, it is also possible
to avert the issue of boundary saving by applying the random boundary condition,
which may bring some noises in the migrated image (Clapp, 2009; Clapp et al., 2010;
Liu et al., 2013b,a).

EFFECTIVE BOUNDARY SAVING

Here we mainly focus on finding the part of boundaries which is really necessary to be
saved (referred to as the effective boundary in this paper), even though there are many
other practical implementation issues in GPU-based RTM (Liu et al., 2012a). In what
follows, we introduce the effective boundary saving for regular grid and staggered grid
finite difference. All analysis will be based on 2D acoustic wave propagation in RTM.
In other cases, the wave equation may change but the principle of effective boundary
saving remains the same.

Which part of the wavefield should be saved?

To reconstruct the modeled source wavefield in backward steps rather than read the
stored history from the disk, one can reuse the same template by exchanging the role
of pk+1 and pk−1, that is,

pk−1 = 2pk − pk+1 + v2∆t2∇2pk. (5)
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We conduct the modeling (and the backward propagation in the same way due to
template reuse):

for ix, iz... p0(:) = 2p1(:)− p0(:) + v2(:)∆t2∇2p1(:)

ptr = p0; p0 = p1; p1 = ptr; //exchange pointer

where (:) = [ix, iz], p0 and p1 are pk+1/pk−1 and pk, respectively. When the modeling
is finished, only the last two wave snaps (pnt and pnt−1) as well as the saved boundaries
are required to do the backward time recursion.

As you see, RTM begs for an accurate reconstruction before applying the imaging
condition using the backward propagated wavefield. The velocity model is typically
extended with sponge absorbing boundary condition (ABC) (Cerjan et al., 1985) or
PML and its variants (Komatitsch and Martin, 2007) to a larger size. In Figure
1, the original model size A1A2A3A4 is extended to C1C2C3C4. In between is the
artificial boundary (C1C2C3C4\A1A2A3A4). Actually, the wavefield we intend to re-
construct is not the part in extended artificial boundary C1C2C3C4\A1A2A3A4 but
the part in the original model zone A1A2A3A4. We can reduce the boundary load
further (from whole C1C2C3C4\A1A2A3A4 to part of it B1B2B3B4 ) depending on
the required grids in finite difference scheme, as long as we can maintain the cor-
rectness of wavefield in A1A2A3A4. We do not care about the correctness of the
wavefield neither in A1A2A3A4 nor in the effective zone B1B2B3B4 (i.e. the wave-
field in C1C2C3C4\B1B2B3B4). Furthermore, we only need to compute the imaging
condition in the zone A1A2A3A4, no concern with the part in C1C2C3C4\A1A2A3A4.

Effective boundary for regular grid finite difference

Assume 2N -th order finite difference scheme is applied. The Laplacian operator is
specified by

∇2pk = ∂xxp
k + ∂zzp

k

= 1
∆z2

∑N
i=−N cip

k[ix][iz + i] + 1
∆x2

∑N
i=−N cip

k[ix+ i][iz]
(6)

where ci is given by Table 1, see a detailed derivation in Fornberg (1988). The
Laplacian operator has x and z with same finite difference structure. For x dimension
only, the second derivative of order 2N requires at least N points in the boundary
zone, as illustrated by Figure 2. In 2-D case, the required boundary zone has been
plotted in Figure 3a. Note that four corners in B1B2B3B4 in Figure 1 are not needed.
This is exactly the boundary saving scheme proposed by Dussaud et al. (2008).

Keep in mind that we only need to guarantee the correctness of the wavefield in the
original model zoneA1A2A3A4. However, the saved wavefield inA1A2A3A4\B1B2B3B4

is also correct. Is it possible to further shrink it to reduce number of points for sav-
ing? The answer is true. Our solution is: saving the inner N layers on each side
neighboring the boundary A1A2A3A4\D1D2D3D4, as shown in Figure 3b. We call it
the effective boundary for regular finite difference scheme.
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C2 C3

C4

A1

A2 A3

A4

B1

B2 B3

B4

P0

Figure 1: Extend the model size with artificial boundary. A1A2A3A4 indicates the
original model size (nz× nx). C1C2C3C4 is the extended model size (nz+ 2nb)(nx+
2nb). B1B2B3B4\A1A2A3A4 is the effective boundary area.

Table 1: Finite difference coefficients for regular grid (Order-2N)

i -4 -3 -2 -1 0 1 2 3 4
N = 1 1 -2 1
N = 2 -1/12 4/3 -5/2 4/3 -1/12
N = 3 1/90 -3/20 3/2 -49/18 3/2 -3/20 1/90
N = 4 -1/560 8/315 -1/5 8/5 -205/72 8/5 -1/5 8/315 -1/560
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After nt steps of forward modeling, we begin our backward propagation with the
last 2 wavefield snap pnt and pnt−1 and saved effective boundaries inA1A2A3A4\D1D2D3D4.
At that moment, the wavefield is correct for every grid point. (Of course, the correct-
ness of the wavefield in A1A2A3A4 is guaranteed.) At time k, we assume the wave-
field in A1A2A3A4 is correct. One step of backward propagation means A1A2A3A4

is shrunk to D1D2D3D4. In other words, the wavefield in D1D2D3D4 is correctly
reconstructed. Then we load the saved effective boundary of time k to overwrite
the area A1A2A3A4\D1D2D3D4. Again, all points of the wavefield in A1A2A3A4

are correct. We repeat this overwriting and computing process from one time step
to another (k → k − 1), in reverse time order. The wavefield in the boundary
C1C2C3C4\A1A2A3A4 may be incorrect because the points here are neither saved
nor correctly reconstructed from the previous step.

xPx0Px−1Px−2Px−3Px−4Px1Px2Px3Px4

Extended boundary. Inner grid.

∂xx = 1
∆x2

∑N

i=−N
cip

k[ix+ i][iz], N = 4.

Figure 2: 1-D schematic plot of required points in regular grid for boundary saving.
Computing the laplacian needs N points in the extended boundary zone, the rest
N + 1 points in the inner model grid. N points is required for boundary saving.

Effective boundary for staggered grid finite difference

The limitation of boundary saving strategy proposed in Dussaud et al. (2008) is
that only regular grid finite difference scheme is considered in RTM. In the case of
staggered grid, half grid points are employed to obtain higher accuracy for finite
difference. Recursion from time k to k + 1 (or k − 1) may not be realized with ease
due to the Laplacian operator, which involves the second derivative. An effective
approach is to split Eq. (1) into several first derivative equations or combinations of
first derivative and second derivative equations. The first derivative is defined as

∂uf =
1

∆u

(
N∑

i=1

ci(f [u+ i∆u/2]− f [u− i∆u/2])

)
, u = z, x (7)

where the finite difference coefficients are listed in Table 2.

The use of half grid points in staggered grid makes the effective boundary a little
different from that in regular grid. To begin with, we define some intermediate
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C4
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A2 A3
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(a)
C1

C2 C3

C4

A1

A2 A3

A4

D1

D2 D3

D4

(b)

Figure 3: A 2-D sketch of required points for boundary saving for regular grid finite
difference: (a) The scheme proposed by Dussaud et al. (2008) (red zone). (b) Proposed
effective boundary saving scheme (gray zone).

Table 2: Finite difference coefficients for staggered grid (Order-2N)

i 1 2 3 4
N = 1 1
N = 2 1.125 -0.0416667
N = 3 1.171875 -0.0651041667 0.0046875
N = 4 1.1962890625 -0.079752604167 0.0095703125 -0.000697544642857
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auxiliary variables: Ax := ∂xp, Az := ∂zp, Px := ∂xAx and Pz := ∂zAz. Thus the
acoustic wave equation reads

∂2p

∂t2
= v2 (Px+ Pz)

Px = ∂xAx, Pz = ∂zAz

Ax = ∂xp,Az = ∂zp

(8)

It implies that we have to conduct 2 finite difference steps (one for Ax and Az and the
other for Px and Pz ) to compute the Laplacian in one step of time marching. Take
8-th order (2N = 8) finite difference in x dimension for example. As can be seen from
Figure 4, computing ∂xx at Px0 needs the correct values at Ax4,Ax3,Ax2,Ax1 in the
boundary; computing Ax1,Ax2,Ax3,Ax4 needs the correct values at Px4,Px5,Px6,Px7

in the boundary. An intuitive approach is saving N points of Ax (Ax1, . . . , Ax4) and
N points of Px (Px4, . . . , Px7). The saving procedure guarantees the correctness of
these points in the wavefield. Another possible approach is just saving the 2N − 1
points of Px (Px1, . . . , Px7). In this way, the values of Ax1, . . . , Ax4 can be correctly
obtained from the calculation of the first derivative. The latter method is preferable
because it is much easier for implementation while requiring less points. Speaking two
dimensionally, some points in the four corners at in B1B2B3B4 of Figure 1 may be still
necessary to store, as shown in Figure 5a. The reason is that you are working with
Laplacian, not second derivative in one dimension. Again, we switch our boundary
saving part from out of A1A2A3A4 to A1A2A3A4\D1D2D3D4. Less grid points are
required to guarantee correct reconstruction while points in the corner are no longer
needed. Therefore, the proposed effective boundary for staggered finite difference needs
2N − 1 points to be saved on each side, see Figure 5b.

xPx0Px−1Px−2Px−3Px−4Px1Px2Px3Px4Px5Px6Px7

Ax−1Ax−2Ax−3Ax−4Ax1Ax2Ax3Ax4Ax5Ax6Ax7

Extended boundary. Inner grid.

∂xxp = ∂xAx = 1
∆x

∑N

i=1
ci(Ax[x+i∆x/2]−Ax[u−i∆x/2]),

Ax = ∂xp = 1
∆x

∑N

i=1
ci(p[x+ i∆x/2]−p[x− i∆x/2]),N = 4.

Figure 4: 2N -th order staggered grid finite difference: correct backward propagation
needs 2N − 1 points on one side. For N = 4, computing ∂xx at Px0 needs the correct
values at Ax4, Ax3, Ax2, Ax1 in the boundary; computing Ax4,Ax3, Ax2, Ax1 needs
the correct values at Px4, Px5, Px6, Px7 in the boundary. Thus, 2N − 1 = 7 points
in boundary zone is required to guarantee the correctness of the inner wavefield.
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C1

C2 C3

C4

A1

A2 A3

A4

(a)
C1

C2 C3

C4

A1

A2 A3

A4

D1

D2 D3

D4

(b)

Figure 5: A 2-D sketch of required points for boundary saving for staggered grid
finite difference: (a) Saving the points outside the model (red region). (b) Effective
boundary, saving the points inside the model zone (gray region).

Storage analysis

For the convenience of complexity analysis, we define the size of the original model
as nz × nx. In each direction, we pad the model with the nb points on both sides
as the boundary. Thus, the extended model size becomes (nz + 2nb)(nx + 2nb).
Conventionally one has to save the whole wavefield within the model size on the disk.
The required number of points is

nz · nx. (9)

According to Dussaud et al. (2008), for 2N -th order finite difference in regular grid,
N points on each side are added to guarantee the correctness of inner wavefield. The
saving amount of every time step is

2N · nz + 2N · nx = 2N(nz + nx). (10)

In the proposed effective boundary saving strategy, the number becomes

2N · nz + 2N · nx− 4N2 = 2N(nz + nx)− 4N2. (11)

In the case of staggered grid, there are 2N − 1 points on each side. Allowing for
four corners, the number for the effective boundary saving is

2(2N − 1)nz + 2(2N − 1)nx− 4(2N − 1)2 = 2(2N − 1)(nz + nx)− 4(2N − 1)2 (12)

Assume the forward modeling is performed nt steps using the floating point format
on the computer. The saving amount will be multiplied by nt · sizeof(float) = 4nt.
Table 3 lists this memory requirement for different boundary saving strategies.
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Table 3: Storage requirement for different saving strategy

Boundary saving scheme Saving amount (Unit: Bytes)
Conventional saving strategy 4nt · nz · nx
Dussaud’s: regular grid 4nt · 2N(nz + nx)
Effective boundary: regular grid 4nt · (2N(nz + nx)− 4N2)
Effective boundary: staggered grid 4nt · (2(2N − 1)(nz + nx)− 4(2N − 1)2)

In principle, the proposed effective boundary saving will reduce 4nt · 4N2 bytes
for regular grid finite difference, compared with the method of Dussaud et al. (2008).
The storage requirement of staggered grid based effective boundary saving is about
(2N − 1)/N times of that in the regular grid finite difference, by observing 2N �
nb � nx, nz. For the convenience of practical implementation, the four corners can
be saved twice so that the saving burden of the effective boundary saving has no
difference with the method of Dussaud et al. (2008) in regular grid finite difference.
Since the saving burden for staggered grid finite difference has not been touched in
Dussaud et al. (2008), it is still of special value to minimize its storage requirement
for GPU computing.

GPU IMPLEMENTATION USING CPML BOUNDARY
CONDITION

CPML boundary condition

To combine the absorbing effects into the acoustic equation, CPML boundary condi-
tion is such a nice way that we merely need to combine two convolutional terms into
the above equations: 

∂2p

∂t2
= v2 (Px+ Pz)

Px = ∂xAx+ Ψx

Pz = ∂zAz + Ψz

Ax = ∂xp+ Φx

Az = ∂zp+ Φz

(13)

where Ψx, Ψz are the convolutional terms of Ax and Az; Φx, Φz are the convolutional
terms of Px and Pz. These convolutional terms can be computed via the following
relation: 

Ψn
x = bxΨn−1

x + (bx − 1)∂n+1/2
x Ax

Ψn
z = bzΨn−1

z + (bz − 1)∂n+1/2
z Az

Φn
x = bxΦn−1

x + (bx − 1)∂n−1/2
x p

Φn
z = bzΦn−1

z + (bz − 1)∂n−1/2
z p

(14)
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where bx = e−d(x)∆t and bz = e−d(z)∆t. In the absorbing layers, the damping parameter
d(u) we used is (Collino and Tsogka, 2001):

d(u) = d0(
u

L
)2, d0 = − 3v

2L
ln(R), (15)

where L indicates the PML thickness; u represent the distance between current po-
sition (in PML) and PML inner boundary. R is always chosen as 10−3 ∼ 10−6. For
more details about the derivation of CPML, the interested readers are referred to
Collino and Tsogka (2001) and Komatitsch and Martin (2007). The implementation
of CPML boundary condition is easy to carry out: in each iteration the wavefield ex-
trapolation is performed according to the first equation in (13); it follows by adding
the convolutional terms in terms of (14).

Memory manipulation

Consider the Marmousi model (size=751x2301) and the Sigsbee model (size=1201x3201).
Assume nt = 10000 and the finite difference of order 2N = 8. Conventionally, one
have to store 64.4 GB for Marmousi model and 143.2 GB for Sigsbee model on the
disk of the computer. Using the method of Dussaud et al. (2008) or regular grid based
effective boundary saving, the storage requirement will be greatly reduced, about 0.9
GB and 1.3 GB for the two models. Staggered grid finite difference is preferable due
to higher accuracy, however, the saving amount of effective boundary needs 1.6 GB
and 2.3 GB for the two models, much larger than regular grid. Besides the addi-
tional variable allocation, the storage requirement may still be a bottleneck to save
all boundaries on GPU to avert the CPU saving and data exchange for low-level
hardware, even if we are using effective boundary saving.

Fortunately, page-locked (also known as pinned) host memory provides us a prac-
tical solution to mitigate this conflict. Zero-copy system memory has identical coher-
ence and consistency to global memory. Copies between page-locked host memory
and device memory can be performed concurrently with kernel execution (Nvidia,
2011). ∗ Therefore, we store a certain percentage of effective boundary on the page-
locked host memory, and the rest on device. A reminder is that overuse of the pinned
memory may degrade the bandwidth performance.

Code organization

Allowing for the GPU block alignment, the thickness of CPML boundary is cho-
sen to be 32. Most of the CUDA kernels are configured with a block size 16x16.
Some special configurations are related to the initialization and calculation of CPML
boundary area. The CPML variables are initialized along x and z axis with CUDA

∗Generally, a computer has same or larger amount of resource on host compared with GDDR
memory on device.

TCCS-7



Yang et al. 12 Boundary saving in GPU-based RTM

kernels cuda init abcz(. . .) and cuda init abcx(. . .). When device alloc(. . .)
is invoked to allocate memory, there is a variable phost to control the percentage
of the effective boundary saved on host and device memory by calling the function
cudaHostAlloc(. . .). A pointer is referred to the pinned memory via cudaHostGetDevicePointer(. . .).
The wavelet is generated on device using cuda ricker wavelet(. . .) with a domi-
nant frequency fm and delayed wavelength. Adding a shot can be done by a smooth
bell transition cuda add bellwlt(. . .). We implement RTM (of order NJ=2, 4, 6,

8, 10) with forward and backward propagation functions step forward(. . .) and
step backward(. . .), in which the shared memory is also used for faster computation.
The cross-correlation imaging of each shot is done by cuda cross correlate(. . .).
The final image can be obtained by stacking the images of many shots using cuda imaging(. . .).
Most of the low-frequency noise can be removed by applying the muting function
cuda mute(. . .) and the Laplacian filtering cuda laplace filter(. . .).

NUMERICAL EXAMPLES

Exact reconstruction

To make sure that the proposed effective boundary saving strategy does not introduce
any kind of error/artifacts for the source wavefield, the first example is designed using
a constant velocity model: velocity=2000 m/s, nz = nx = 320, ∆z = ∆x = 5m. The
source position is set at the center of the model. The modeling process is performed
nt = 1000 time samples. We record the modeled wavefield snap at k = 420 and
k = 500, as shown in the top panels of Figure 6. The backward propagation starts
from k = 1000 and ends up with k = 1. In the backward steps, the reconstructed
wavefield at k = 500 and k = 420 are also recorded, shown in the bottom panels of
Figure 6. We also plot the wavefield in the boundary zone in both two panels. Note
that the correctness of the wavefield in the original model zone is guaranteed while
the wavefield in the boundary zone does not need to be correct.

Marmousi model

The second example is GPU-based RTM for Marmousi model (Figure 7) using our
effective boundary saving. The spatial sampling interval is ∆x = ∆z = 4m. 51
shots are deployed. In each shot, 301 receivers are placed in the split shooting mode.
The parameters we use are listed as follows: nt = 13000, ∆t = 0.3 ms. Due to the
limited resource on our computer, we store 65% boundaries using page-locked memory.
Figure 8 gives the resulting RTM image after Laplacian filtering. As shown in the
figure, RTM with the effective boundary saving scheme produces excellent image: the
normalized cross-correlation imaging condition greatly improves the deeper parts of
the image due to the illumination compensation. The events in the central part of
the model, the limits of the faults and the thin layers are much better defined.
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(a) (b)

(c) (d)

Figure 6: The wavefield snaps with a constant velocity model: velocity=2000 m/s,
nz = nx = 320, ∆z = ∆x = 5m, source at the center. The forward modeling is
conducted with nt = 1000 time samples. (a–b) Modeled wavefield snaps at k = 420
and k = 500. The backward propagation starts from k = 1000 and ends at k = 1.
(c–d) Reconstructed wavefield snaps at k = 500 and k = 420. Note the correctness
of the wavefield in the original model zone is guaranteed while the wavefield in the
boundary zone may be incorrect (32 layers of the boundary on each side are also
shown in the figure).
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Figure 7: The Marmousi velocity model.

(a) (b)

Figure 8: RTM result of Marmousi model using effective boundary saving scheme
(staggered grid finite difference). (a) Result of cross-correlation imaging condition.
(b) Result of normalized cross-correlation imaging condition.
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Sigsbee model

The last example is Sigsbee model shown in Figure 9. The spatial interval is ∆x =
∆z = 25m. 55 shots are evenly distributed on the surface of the model. We still
perform nt = 13000 time steps for each shot (301 receivers). Due to the larger
model size, 75% boundaries have to be stored with the aid of pinned memory. Our
RTM result is shown in Figure 10. Again, the resulting image obtained by normal-
ized cross-correlation imaging condition exhibits better resolution for the edges of
the salt body and the diffraction points. Some events in the image using normal-
ized cross-correlation imaging condition are more visible, while they have a much
lower amplitude or are even completely lost in the image of cross-correlation imaging
condition.

Figure 9: The Sigsbee velocity model.

CONCLUSION AND DISCUSSION

In this paper, we introduce the effective boundary saving strategy for GPU-based
RTM imaging. Compared with the method of Dussaud et al. (2008), the saving
amount of effective boundary with regular grid finite difference scheme is slightly
reduced. The RTM storage of effective boundary saving for staggered finite differ-
ence is first explored, and then implemented with CPML boundary condition. We
demonstrate the validity of effective boundary saving strategy by numerical test and
imaging of benchmark models.

The focus of this paper is RTM implementation using effective boundary saving
in staggered grid instead of GPU acceleration. A limitation of this work is that the
numerical examples are generated with NVS5400M GPU on a laptop (compute ca-
pability 2.1, GDDR3). It is easy to do performance analysis for different dataset size
and higher stencil orders if the latest GPU card and CUDA driver are available. It is
also possible to obtain improved speedup by incorporating MPI with GPU program-
ming using advanced clusters with larger GDDR memory (Komatitsch et al., 2010a;
Suh et al., 2010) or FPGA optimization (Fu and Clapp, 2011; Medeiros et al., 2011).
Unfortunately, higher stencil orders of staggered grid RTM using effective boundary
implementation in 3D is still a problem. 3D RTM using the 2nd order regular grid
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(a)

(b)

Figure 10: RTM result of Sigsbee model using effective boundary saving scheme
(staggered grid finite difference). (a) Result of cross-correlation imaging condition.
(b) Result of normalized cross-correlation imaging condition.
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finite difference with Clayton and Enquist boundary condition (only 1 layer on each
side to save) needs tens of GBs (Liu et al., 2013b). It implies that 3D RTM with
higher stencil orders will definitely exceed the memory bound of current and next
generation GPUs. For GPU implementation of 3D RTM, the practical way is using
the random boundary condition (Liu et al., 2013a) or saving on the disk. A deeper
discussion of the practical issues for GPU implementation of RTM can be found in
Liu et al. (2012a).
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reverse time migration kernel using the hce high level synthesis tool: International
Conference on Field-Programmable Technology (FPT), IEEE, 1–8.

Ji, Q., S. Suh, and B. Wang, 2012, Iterative velocity model building using gpu based
layer-stripping tti rtm, in SEG Technical Program Expanded Abstracts 2012: So-
ciety of Exploration Geophysicists, 1–5.

Kim, Y., Y. Cho, U. Jang, and C. Shin, 2013, Acceleration of stable {TTI} p-wave
reverse-time migration with {GPUs}: Computers & Geosciences, 52, 204 – 217.

Komatitsch, D., G. Erlebacher, D. Göddeke, and D. Michéa, 2010a, High-order finite-
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