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ABSTRACT

Based on the fact that the Hankel matrix constructed by noise-free seismic data is
lowrank (LR), LR approximation (or rank-reduction) methods have been widely
used for removing noise from seismic data. Due to the linear-event assumption
of the traditional LR approximation method, it is difficult to define a rank that
optimally separates the data subspace into signal and noise subspaces. For pre-
serving the most useful signal energy, a relatively large rank threshold is often
chosen, which inevitably leaves residual noise. To reduce the energy of residual
noise, we propose an optimally damped rank-reduction method. The optimal
damping is applied via two steps. In the first step, a set of optimal damping
weights is derived. In the second step, we derive an optimal singular-value damp-
ing operator. We review several traditional lowrank methods and compare their
performance with the new one. We also compare these lowrank methods with
two sparsity-promoting transform methods. Examples demonstrate that the pro-
posed optimally damped rank-reduction method could get significantly cleaner
denoised images compared with the state-of-the-art methods.

INTRODUCTION

Random noise can seriously affect the stability and precision of seismic data processing
and imaging steps including inversion-based migration, full waveform inversion, AVO
inversion, and post-stack seismic interpretation. Thus, its removal is very important

(Galbraith, 1991; Amani et al., 2017; Zhao et al., 2018; Li et al., 2020).

The sparse transform based denoising methods assume the seismic data to be
sparse in the transform domain and the spreading noise in the transform domain can
be suppressed by applying a thresholding operation. These methods include those
based on the Fourier transform (Bracewell and Bracewell, 1986), Radon transform
(Beylkin, 1987), seislet transform (Fomel and Liu, 2010; Chen and Fomel, 2018),
curvelet transform (Candes et al., 2006), wavelet transform (Gilles, 2013; Mousavi
et al., 2016), dreamlet transform (Huang et al., 2018), dictionary-learning based sparse
transform (Zhou et al., 2016; Siahsar et al., 2017a,b; Zu et al., 2019). Prediction based
methods are another group of popular denoising methods, such as time-space domain
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prediction method (Abma and Claerbout, 1995), frequency-space predictive filtering
(Canales, 1984), regularized non-stationary prediction method (Liu et al., 2012; Liu
and Chen, 2013), and the polynomial fitting method (Liu et al., 2011). The decompo-
sition based denoising methods consider the separability of seismic signal and random
noise and attempt to extract useful information from the principal components of the
noisy data. Typical methods include the empirical-mode decomposition (EMD) re-
lated methods (Huang et al., 1998), e.g., the ensemble EMD (Wu and Huang, 2009),
complete ensemble empirical-mode decomposition (Colominas et al., 2012), improved
complete ensemble empirical-mode decomposition (Colominas et al., 2012), singular-
value decomposition (SVD) related methods (Bekara and van der Baan, 2007), and
non-stationary decomposition with regularization (Li et al., 2018).

In this paper, we aim to improve on the multi-dimensional Cadzow filter applied
to constant-frequency slices (Cadzow, 1988; Trickett, 2008), also referred to as multi-
channel singular spectrum analysis (MSSA) (Oropeza and Sacchi, 2011; Chiu, 2013;
Qiao et al., 2016). This filter has been widely adopted for seismic data processing
due to its good performance (Ginolhac et al., 2013; Gao et al., 2017; Wang et al.,
2018). This algorithm is based on lowrank (LR) matrix approximation. The main
requirement of the LR methods is the low rank of the frequency-domain Hankel ma-
trix. The rank of the Hankel matrix equals the number of distinct dips (Oropeza
and Sacchi, 2011; Chen et al., 2016; Wang et al., 2020). However, the real seismic
data are complicated, where the linear-events assumption is not met. To apply the
LR methods, one needs to divide the field data into small time-space windows for
separate processing (Zhang et al., 2017; Zu et al., 2017). Nevertheless, it will cause
another problem in local processing windows, i.e., if we use a fixed rank for all the
local windows, then it is possible that this rank is too large for some windows (so that
the LR approximation keeps too much noise) and is too small for some other windows
(such that the method loses the useful information). Thus, to optimize the denois-
ing performance, it is desirable to find the appropriate rank for each local window.
The rank can also be adaptively selected according to the ratio of two consecutive
singular-values (Wu and Bai, 2018). However, all these strategies work only when
the data structure is not complex and may not be applicable when noise is extremely
strong.

In practice, the predefined rank is usually set large enough to preserve the useful
signals without damaging weak and curving energy. The selection of a large rank
could leave significant residual noise in the filtered data. One possible solution is
to use a threshold to further suppress the residual noise after the rank-reduction
step. This second-step thresholding can be understood conveniently in the frame-
work of nuclear norm minimization (Zhou and Zhang, 2017). This strategy brings
another challenging question on how to optimally choose the threshold for damp-
ing the residual noise. Considering that the thresholding step can be interpreted as
a re-weighting process for the singular-values, we apply an adaptive singular-value
weighting method following Nadakuditi (2013). This weighting method is an adap-
tive to shrinkage the singular values as compared with the direct truncation strategy.
Aharchaou et al. (2017) introduced this adaptive weighting method to seismic data
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reconstruction problems. Some other alternatives to the presented approach in this
paper, such as those automated methods in (Gavish and Donoho, 2014) or Trickett
(2015). One can further improve the optimal weighting based rank-reduction method
by cascading the weighting strategy into the damed rank-reduction framework. The
resulting algorithm is referred to as the optimal damped rank-reduction (ODRR)
method. It has the potential to make the damped rank-reduction method effective
for a wide range of rank selection in an adaptive way. We use different synthetic and
field seismic datasets to show the advantages of the presented algorithm.

THEORY
Hankel matrix embedding

The rank-reduction based methods discussed in this paper deal with a block Hankel
matrix (Inline and Xline) in the frequency-space domain. Let D(¢, z,y) (of size N; x
N, x N,) represent a 3D seismic dataset. First, we transform D(¢,z,y) in time-
space domain to D(w, z,y)(w = 1--- N,) in the frequency-space domain. At a given
frequency wy slice, the 2D data can be expressed as (Oropeza and Sacchi, 2011):

D(2,1) D(2,2) --- D(2,N,
by = | DBV PRI DR 0
D(N,,1) D(N,,2) --- D(N,, N,)

From here on, wq is omitted for notational convenience. A Hankel matrix is then
constructed from D. We first construct a Hankel matrix R; as:

D(Z:’l) D(Z:,Q) D(va)
N e I L
D(i,N,—m+1) D(i,N,—m+2) -~ D(i,N,)

and then construct the block Hankel matrix as:

R, R, ... R,
R R ... R,
M = N S (3)
Ry,—n+1 Ry,—ni2 -+ Rp,

Parameters m and n are chosen to make R; and M close to square matrices, e.g.,
m= N, — L%J and n = N, — | %]. The symbol |-| outputs the integer of an input
value. The matrix M is of size I x J, with [ = (N, —m + 1)(N, —n+1), J = mn.
The block Hankel matrix M is considered to be lowrank (Trickett, 2008; Oropeza and
Sacchi, 2011; Huang et al., 2016; Chen et al., 2019a), i.e., it can be approximated by
a small number of eigen-images.
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Rank-reduction method

Regularization can be implemented as a rank-based constraint (Trickett, 2008; Oropeza
and Sacchi, 2011; Cheng and Sacchi, 2015):

X = argmin | D — X ||,

. (4)
subject to rank(#H(X)) = N,

where || - || denotes the Frobenius norm. D denotes a matrix constructed from the
frequency slice corresponding to wy. X denotes the noise-free data to be estimated.
X denotes the estimated signal. H(X) denotes the Hankel matrix constructed from
X. Let M = H(D), the singular value decomposition of M can be expressed as

M =UXZV#, (5)

where U and V are referred to as the left and right singular vector matrices, respec-
tively. X is the singular value matrix. (-)* denotes complex tranpose. According to
equation 4, the rank of the signal component that is embedded in the Hankel ma-
trix M is assumed to be N. The traditional rank-reduction method based on the
truncated singular value decomposition (TSVD) (Oropeza and Sacchi, 2011) can be
briefly expressed as

S = UyESyVY, (6)

which is a solution to equation 4 according to the Eckart-Young-Mirsky theorem
(Eckart and Young, 1936). S denotes the denoised signal. Uy and V are matri-
ces composed of the left N singular vectors in U and V, respectively. Xy is the
truncated singular value matrix with the first N singular values preserved. Although
theoretically NV equals to the number of distinct dipping components, it is practically
defined as a relatively large number considering data complexity, otherwise signal
energy can be damaged. The algorithm workflow for the traditional rank-reduction
method (RR) is outlined in Algorithm 1. A in the algorithm workflow denotes an
averaging operator along anti-diagonals.

Damped rank-reduction method

The estimated signal using the TSVD method, however, still contains non-negligible
residual noise components, as explained in Huang et al. (2016). The problem of
residual noise can be solved to some extent by further applying a thresholding operator
to the singular value matrix according to the nuclear-norm minimization model (Zhou
and Zhang, 2017): )

S =UxT(Zn,7)VE, (7)

where T denotes the thresholding operator for the singular-values, and 7 denotes
the threshold of the operator. Defining an optimal threshold 7, however, is often
challenging because a constant threshold is inadequate to handle an inhomogeneous
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distribution of noise energy. Huang et al. (2016) developed a more elegant way to
shrinkage the singular values by deriving a damping operator:

P=I-T, (8)
I =6"(Zn) ", (9)

where P is called the damping matrix, I is an identity matrix, and I is referred to as
the damping threshold matrix. ¢ is the (N + 1)th singular value in the un-truncated
singular matrix 3. K in equation 9 is called the damping factor, which is used to
control the strength of the damping operator. In a special case, when K — oo,
P — I, indicating that the damped rank-reduction method reverts to the traditional
rank-reduction method. The mathematical details to derive the damping operator
can be found in Huang et al. (2016) and Huang et al. (2017). The damping operator
is used to shrinkage the singular values in the TSVD formula to reduce the residual
noise:

S = UyPEZy VI (10)

Compared with the thresholding method in equation 7, where a rigid threshold 7 is
used to shrinkage the singular values, the damping operator applies variable thresholds
to different singular values. According to equation 8, the threshold decreases as the
residual noise becomes less dominant, i.e., the singular value becomes larger. The
algorithm workflow for the damped rank-reduction method (DRR) is outlined in
Algorithm 2.

Optimally damped rank-reduction method

A shortcoming of the traditional rank-eduction and damped rank-reduction methods
is that the output perfomance is quite sensitive to the input parameter N. The rank
parameter varies greatly for different datasets, especially for field datasets. In order
to alleviate the influence of the rank parameter, we take advantage of an adaptive
singular-value weighting algorithm developed by Benaych-Georges and Nadakuditi
(2012) and Nadakuditi (2013). An adaptive singular-value weighting matrix can be
obtained by solving the following problem:

N
w = argmin || Zoiuf(vis)H
w
i=1

—wiowvy ||p, (11)

where uf and v denote ith left and right singular vectors corresponding to the
estimated signal component, o; denotes the ith singular value in 3. w is the adaptive
weight vector, which can be used to construct the adaptive weighting matrix W =
diag(w). The solution to the optimization problem can be obtained as:
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where D represents a transform expressed as:
1 _ _
D(o; %) = T (o(’ I— =) ) Tr (0(c’ I - 2FE)7Y) (13)

and D’ denotes its derivative. The expression of D’ can be expressed as:

D(oi3) =2 %Tr (0(o"T - 22>1)] {%Tl“ ((0’T—%*) " = 20(c’1 — ¥*)%0)
- % [Tr (0(0?L — £2)™)] [Tr (01 - B2)7" — 20%(0*T — %2)7?)] .

(14)

The symbol Tr(:) denotes the trace of the input. The trace of a square matrix X is
defined to be the sum of elements on the main diagonal of X.

N

Tr(X) = ZXi,z‘, (15)

i=1
where X;; denotes the main diagonal elements of X.

The adaptive weighting operator can be applied to make the traditional rank-
reduction method adaptive: X R
S =UyWXyVi. (16)

To incorporate the adaptive weighting operator into the damped rank-reduction
framework, we can introduce intermediate variables as

U9 = Uy, (17)
¥¢ = Wxy, (18)
V¢ =Vy, (19)
then equation 16 turns into
S =UYs9Vve. (20)

It can be derived that the damping formula (equation 8) also holds for equation 20
but with the damping threshold matrix expressed as

K

I =6k (2%>_ , (21)

where the subscript N denotes a sufficiently large rank parameter, as required by the
derivations detailed in Chen et al. (2019b). The resulted final form of the optimally
damped rank-reduction method then can be expressed as

S = UyPWE,VE (22)

The algorithm workflow for the optimally damped rank-reduction method (ODRR) is
outlined in Algorithm 3. Due to the existence of a weighting matrix in the proposed
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method, it is more convenient to choose the input rank parameter N empirically in
practice. As mentioned previously, the rank parameter N is in practice set to a rel-
atively large value to forestall damaging the signal. But in the proposed algorithm,
even if a large NV is used, the algorithm can adaptively shrink the singular-values.
Thus, its performance is not sensitive to the input rank parameter, in contrast to
other related approaches (Oropeza and Sacchi, 2011). Because of the insensitivity,
one can use a sufficiently large N in processing complicated datasets without leav-
ing strong residual noise in the result. The convenience in tuning parameters makes
the rank-reduction related methods more computationally feasible in large-scale data
processing, e.g., the 5D reconstruction problem (Chen et al., 2019b), since one no
longer needs to tune the parameters many times while one trial is already compu-
tationally demanding. A glossary describing the main mathematical notations are
presented in Table 1. The three methods are all variations of how the singular-values
are thresholded. Simply speaking, the DRR method improves the RR method by
introducing a damping operation and the ODRR method improves DRR method by
further introducing a weighting operation.

RESULTS

In this section, several synthetic and field data examples will be used to test the
validity of the proposed method. We will use examples containing both crossing
linear events and hyperbolic events to test the sensitivity of methods to different data
structures. For synthetic examples, we use the signal-to-noise ratio (SNR) metric for
quantitative evaluation, which is defined as follows:

IS1I%

IS —S|I%

(23)

where S and S denote the estimated signal and exact solution, respectively. In ad-
dition, we use the local similarity attribute (Chen and Fomel, 2015) to measure the
damage that a denoising method can cause to seismic data. In general, higher local
similarity between the denoised data and removed noise indicates greater damages.
The local similarity attribute allows to quantify the effectiveness of a denoising algo-
rithm on datasets when the exact solution is unknown. The local similarity can also
measure the local orthogonality between the separated signal and noise components
(Chen and Fomel, 2015). Here, we assume that the signal and noise components
should be locally orthogonal, which is indicated by low anomalies in the local simi-
larity maps. Processing pre-stack seismic data is much more challenging than that
for post-stack seismic data. Subtle diffraction signals could be treated as noise by
the algorithm and be attenuated, potentially damaging images along faults. In this
paper, we only focus on the denoising of post-stack seismic data, but further work
could focus on noise attenuation of pre-stack data.
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Synthetic examples

The first example is shown in Figure 1 including both clean and noisy data. The noisy
data has an SNR of -8.39 dB. In this test, we compare the denoising performance of
four different methods: the frequency-wavenumber (FK) domain thresholding method
(Mahdad, 2012; Abma et al., 2015), the rank-reduction method (RR), the damped
rank-reduction method (DRR), and the proposed method (ODRR). In this example,
we do not use local windows. We use the Ricker wavelet with a dominant frequency
of 40 Hz to generate the clean data. We add Gaussian white noise with variance of
0.2 (as compared with the normalized clean data). Since the proposed method is an
improved version of the DRR method, we compare the proposed method with two
other rank-reduction methods. Since the FK method is one of most commonly used
approaches to attenuate high-frequency high-wavenumber random noise, we also treat
it as a competing method for this comparison. Figure 2 shows denoised data using
different methods. The top row of Figure 2 shows the the dataset denoised by the four
methods, while the middle row of Figure 2 presents the noise extracted by the four
methods. In this test, we preserve the 10% largest coefficients for the FK method to
obtain Figure 2a. We use a rank of N = 3 for all three rank-reduction based methods.
By observing Figure 2a, it is clear that the FK thresholding causes strong artifacts
around the edges. Both FK thresholding and the rank-reduction methods leaves a
large amount of residual noise in the denoised results. The calculated SNRs of the
four methods are 6.03 dB for the FK thresholding method, 6.57 dB for the rank-
reduction method, 10.29 dB for the damped rank-reduction method, and 11.27 dB
for the proposed method. It is clear that the SNR comparison quantitatively confirms
our initial observation that the proposed method obtains the best result among the
four methods. In this test we use a very simple synthetic example that contains three
planar components. In the rank-reduction method, it can be proved that the number
of the planar/linear events is equal to the input rank parameter, i.e., N = 3 in this
test (Trickett and Burroughs, 2009; Oropeza and Sacchi, 2011). Because we know
the ground truth in this test, we the same rank for all methods, and the proposed
method obtains the best performance but is slightly better than the damped method.
However, in the case of the more complex data, where the exact number of events
with distinct dips is unknown, we prefer to choose a more conservative rank to avoid
losing too many useful details. The bottom row of Figure 2 shows the comparison of
local similarity, where we can find that the local similarity of the ODRR method is
much smaller. The spectrum comparison when N = 3 is plotted in Figure 3, which
further verify the best performance of the proposed method.

Next, based on the same example, we use a larger rank N = 6. We also use
a more conservative threshold value for the FK thresholding method, e.g., we pre-
serve the 20% largest coefficients in the transformed domain. The results of the four
methods are shown in the top row of Figure 4. The middle row of Figure 4 shows
the corresponding noise cubes. It is clear that the denoised results of FK threshold-
ing method, rank-reduction method, damped rank-reduction method are all noisier
than the corresponding results presented in Figure 2. However, the result from the
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proposed method, as shown in Figure 4d, is less affected. The calculated SNRs in
this case are 4.31 dB for the FK method, 3.45 dB for the RR method, 8.35 dB for
the DRR method, and 10.86 dB for the proposed method. The differences of SNR
with respect to the previous example for the three methods are 1.72 dB for the FK
thresholding method, 3.12 dB for the rank-reduction method, 1.94 dB for the damped
rank-reduction method, and 0.41 dB for the proposed method. Comparison of SNRs
demonstrates that while the other three methods are sensitive to the input parameter,
the proposed method is much less sensitive, because it can still find the appropriate
rank by using weights. The bottom row of Figure 4 shows the comparison of local
similarity, where we find that the local similarity of the presented method is distinctly
smaller. The spectrum comparison when N = 6 is plotted in Figure 5, which further
verify the best performance of the proposed method.

For a better comparison, we extract the 5th Xline slice from Figures 1 and 4 and
show the slices in Figure 6. In this display, it is even more evident that the proposed
method produces the cleanest result while minimizing signal damage. Figure 7 plots
the SNR diagrams of the different methods with respect to the input parameters.
The input parameters for the rank-reduction based methods and transform based
methods are the selected rank and the percentage of sparse coefficients, respectively.
When the rank is chosen large enough, e.g., larger than 8, the proposed method is
less sensitive in all methods. The two transform based methods are also sensitive to
the percentage of selected coefficients.

To test the performance of the proposed method in denoising high-frequency band.
We create a slightly different example shown in Figure 8. We increase the dominant
frequency of the Ricker wavelet to 60 Hz and then extract the frequency band of
60-100 Hz. We also extract the same frequency band of the Gaussian white noise,
and add the high-frequency noise to the clean data to generate the noisy data. The
denoising comparison of different methods for the high-frequency band is shown in
Figure 9. The spectrum comparison is shown in Figure 10. This test demonstrates
the lowrank methods also work well in high-frequency band.

The next example is a synthetic dataset with hyperbolic events. In this exam-
ple, we use the Ricker wavelet with a dominant frequency of 10 Hz to generate the
clean data. We add Gaussian white noise with variance of 0.2 (as compared with
the normalized clean data). The clean and noisy data are shown in Figures 11a and
11b, respectively. The SNR of the noisy data is -2.17 dB. We apply FK thresholding
method and the three rank-reduction based methods to this example and show the
results in Figure 12. For the FK thresholding method, we preserve 20% largest co-
efficients in the transformed domain. For all the rank-reduction based methods, we
use N = 10. Since the hyperbolic events no longer satisfy the assumption, i.e., being
lowrank, the hyperbolic events in this example are over-smoothed when N = 10. It
is also clear that both FK thresholding and the rank-reduction methods have signif-
icant residual noise. The damped rank-reduction method and the proposed method
are both very clean, but the proposed method is slightly smoother. In this example,
because of the hyperbolic events and their small rank, the removed noise cubes as
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shown in the bottom row of Figure 12 contain a small amount of spatially coher-
ent energy, which indicates signal leakage (Chen and Fomel, 2015). The calculated
SNRs in this example are 7.05 dB for the FK thresholding method, 8.27 dB for the
rank-reduction method, 9.58 dB for the damped rank-reduction method, and 9.65 dB
for the proposed method. In this example, we do not use local windows to locally
pretend that hyperbolic events act as linear events. When applying local windows,
additional parameters (e.g., the window size) need to be compared and considered.
To avoid the this step, we can use a relatively large rank to avoid the signal dam-
age. From the comparison of local similarity, significant damage is highlighted as
high similarity anomalies. We increase the rank from N = 10 to N = 20 and show
the results in Figure 14. For the FK thresholding method, we increase the thresh-
old percentage from 20% to 40%. We find that in this test, both FK thresholding
method and the rank-reduction method leave more residual noise while the results
from the damped rank-reduction method and the proposed method are still very
smooth. However, when N = 20, the rank-reduction methods do not produce signifi-
cant damage to useful signals but they also do not attenuate the noise very well. In
addition, when N = 20, the proposed method becomes obviously smoother than the
damped rank-reduction method. The comparison is more noticeable when observing
the local similarity maps. The calculated SNRs in this example are 5.85 dB for the
FK thresholding method, 7.04 dB for the rank-reduction method, 10.08 dB for the
damped rank-reduction method, and 11.00 dB for the proposed method. Figure 16
shows a single slice comparison of this example (5th Xline slice) when N = 20, where
it is more noticeable that the proposed method obtains the best result. The SNRs for
all the aforementioned tests are given in Table 2 for a detailed comparison. Figure 17
plots the SNR diagrams of the different methods with respect to the input parameters
for the hyperbolic example. When the rank is sufficiently large, e.g., larger than 18,
the proposed approach is clearly more insensitive to the rank when compared to the
other rank-reduction based methods due to the calculation of adaptive weights for
the singular-values. Table 3 compares the computational costs for all these tests. All
three methods are comprable but the proposed method is slightly more expensive.

Field data example

Next we apply the proposed method to the real migrated 3D land seismic dataset
shown in Figure 18. The 3D seismic image corresponds to a land dataset after time
migration. The field dataset goes through a normal seismic processing workflow,
e.g., muting the dead traces, ground roll removal, surface-consistent deconvolution,
pre-stack noise attenuation by the FX method, NMO-based velocity analysis, and
kirchhoff time migration. The temporal sampling interval is 4 ms. There are 200
inlines and 50 crosslines, with trace spacings of 5 m and 10 m, respectively. Figure 19
shows the denoising comparison using different methods. From the previous synthetic
examples, we understand the differences for different rank-reduction related methods.
Therefore, in this example we examine the denoising performance using the seislet
transform (Fomel and Liu, 2010). The seislet transform is deemed to be the sparsest
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Figure 1: Synthetic data examples with linear/planar events. (a) Clean data. (b)
Noisy data. The events shown on the outside of the cube are situated at the blue
lines within the cube.

transform for seismic data. The denoised data using the seislet thresholding method,
the rank-reduction method, and the proposed method are shown in the left column
of Figure 19, respectively. The middle column of Figure 19 shows the corresponding
noise cubes of the three methods. Since for the field data example we do not have
the pure signal for calculating the SNR, we can only use the local similarity metric to
evaluate the denoising performance. The general criterion is that the local similarity
between the denoised data and removed noise should be negligible provided that there
is no signal leakage in the removed noise. The local similarity cubes corresponding to
the three methods are shown in the right column of Figure 19. To make the removed
noise comparably strong, we preserve 8% largest coefficients in the seislet domain. We
use rank N = 21 for the rank-reduction method and use rank N = 30 for the proposed
method. Comparison of the local similarity shows that the seislet transform and the
rank-reduction methods both cause significant signal leakage, while the proposed
method is almost damage-free for the useful signals. It is clear that when removing
the same amount of random noise, it is able to preserve the most signal energy for the
proposed method. At the same time, the new method can get a smoother result than
the rank-reduction method, and same smoothness level compared with the seislet
thresholding method. The spectrum comparison for the field data example is plotted
in Figure 20, where the proposed method preserves more signal spectra than the
seislet method, but removes more noise spectra than the rank-reduction method.
The zoomed comparison in Figure 21 makes this even more obvious.
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Figure 2: Denoising comparison (N = 3). Top row: denoised results using (a) FK
method with 10% largest coefficients, (b) rank-reduction method, (c¢) damped rank-
reduction method, and (d) the proposed method. Middle row: separated noise corre-
sponding to the top row. Bottom row: local similarity corresponding to the top row.
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Figure 4: Denoising comparison (N = 6). Top row: denoised results using (a) FK
method with 20% largest coefficients, (b) rank-reduction method, (c¢) damped rank-
reduction method, and (d) the proposed method. Middle row: separated noise corre-
sponding to the top row. Bottom row: local similarity corresponding to the top row.
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(j) Separated noise corresponding to (b)-(e), respectively. (k)-(n) Local similarity
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Figure 7: SNR diagrams of different lowrank approaches with respect to the selected
rank parameters for the linear synthetic example.
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denoising test (60-100 Hz). (a) Clean data. (b) Noisy data. The events shown on the
outside of the cube are situated at the blue lines within the cube.
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Figure 11: Synthetic data examples with hyperbolic events. (a) Clean data. (b) Noisy
data. The gray scales for all of the images shown in Figures 11-16 are the same.

CONCLUSIONS

The rank-reduction method for seismic noise suppression based on the nuclear norm
minimization requires a carefully selected threshold value. We have developed an
optimal weighting strategy to obtain better shrinkage of the singular-values, bypassing
the need for manual selection of the rank as a priori information. Considering the
issue of residual noise after the optimal rank-reduction method, we further introduce
an optimal way to damp the remaining noise. The proposed method can separate the
noise subspace and the signal subspace in an optimal way. Detailed analyses on the
proposed algorithm via two synthetic datasets and one field example demonstrate that
the proposed method can obtain better denoising performance regarding the noise
removal and signal preservation than the widely used methods in terms of SNR and
local similarity measurements. More importantly, because of the optimally damped
singular-values, the proposed method is an adaptive method, i.e., the performance is
not sensitive to the predefined rank parameter.

DATA AVAILABILITY STATEMENT
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Figure 17: SNR diagrams of different lowrank approaches with respect to the selected
rank parameters for the hyperbolic synthetic example.
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Table 1: Glossary of main mathematical notations used in this paper.

Symbols Meanings
D(t/w,z,y) 3D noisy seismic data
D(w ) or D | abbreviated notation of 2D frequency slice
1th Hankel matrix
block Hankel matrix
signal component

estimated signal component

left singular vector matrix
singular-value matrix

right singular vector matrix

weighting matrix
damping matrix
damping threshold matrix
temporary variable
D-transform
Hankelization operator
thresholding operator
averaging operator
rank
damping factor

NZLﬂi@@ﬂw§<Mdmmgy

Table 2: Comparison of SNRs in dB for different rank-reduction based methods.
RR denotes the rank-reduction method. DRR denotes the damped rank-reduction
method. ODRR denotes the optimally damped rank-reduction method.

Tests Noisy (dB) | RR (dB) | DRR (dB) | ODRR (dB)
Linear synthetic 3) -8.39 6.57 10.29 11.27
6) -8.39 3.45 8.35 10.86

Hyperbolic syntheti
Hyperbolic syntheti

(N=
Linear synthetic (
c
c

N=
(N=10) | -2.17 8.27 9.58 9.65
(N=20) | -2.17 7.04 10.08 11.00
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Table 3: Comparison of computational costs in seconds for different rank-reduction
based methods.

Tests FK (s) | RR (s) | DRR (s) | ODRR (s)
Linear synthetic (N=3) 0.13 2.27 2.45 2.43
6) 0.17 3.02 3.04 3.17

Hyperbolic syntheti
Hyperbolic syntheti

(N
Linear synthetic (
c
c

N=
(N=10) | 043 | 1.69 1.71 1.83
(N=20) | 049 | 2.75 2.69 2.83




