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Madagascar is an open-source software package for multidimensional data analysis and reproducible computational experiments. Its

T# mission is fo provide

Installation . .
) ) s a convenient and powerful environment

GitHub repository

SEGTex + a convenient technology transfer tool

Introduction for researchers working with digital image and data processing in geophysics and related fields. Technology developed using the
Package overview Madagascar project management system is transferred in the form of recorded processing histories, which become "computational
Tutorial recipes" to be verified, exchanged, and modified by users of the system.
Hands-on tour
Reproducible
docyment Featur‘es

User Documentation Madagascar is a modern package. Started in 2003 and publicly released in 2006, it was developed almost entirely from scratch.
List of programs Being a relatively new package, it follows modern software engineering practices such as module encapsulation and test-driven
Common programs development. A rapid development of a project of this scope (more than 1,000 main programs and more than 5,000 tests) would not be

Popular programs
The RSF file farmat

Reproducibility with
SCons L=

possible without standing on the shoulders of giants and learning from the 30 years of previous experience in open packages such as
SEPIlib and Seismic Unix. We have borrowed and reimplemented functionality and ideas from these other packages.

;3') Madagascar is a test-driven package. Test-driven development is not only an agile software programming practice but also a way

Developer of bringing scientific foundation to geophysical research that involves numerical experiments. Bringing reproducibility and peer
documentation

Adding programs

review, the backbone of any real science, to the field of computational geophysics is the main motivation for Madagascar development.
The package consists of two levels: low-level main programs (typically developed in the C programming language and working as data

Contributin

programs g filters) and high-level processing flows (described using the Python programming language) that combine main programs and

API demao: clipping completely document data processing histories for testing and reproducibility. Experience shows that high-level programming is easily
data

o mastered even by beginning students who have no previous programming experience.
AP1 demao: explicit

finite differences ..% Madagascar is an open-source package. It is distributed under the standard GPL open-source license, which places no restriction

Community on the usage and modification of the code. Moreover, access to modifying the source repository is not controlled by one

Conferences organization but shared equally among different developers. This enables an open collaboration among different groups spread all over
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ABSTRACT

In elastic imaging, the extrapolated vector fields are de-
coupled into pure wave modes, such that the imaging con-
dition produces interpretable images. Conventionally, mode
decoupling in anisotropic media is costly because the oper-
ators involved are dependent on the velocity, and thus they
are not stationary. We have developed an efficient pseudo-
spectral approach to directly extrapolate the decoupled elas-
tic waves using low-rank approximate mixed-domain
integral operators on the basis of the elastic displacement
wave equation. We have applied k-space adjustment to
the pseudospectral solution to allow for a relatively large
extrapolation time step. The low-rank approximation was,
thus, applied w the spectral operators that simultaneously
extrapolate and decompose the elastc wavefields. Synthetic
examples on transversely isotropic and orthorhombic mod-
els showed that our approach has the potential to efficiently
and accurately simulate the propagations of the decoupled
quasi-P and quasi-S modes as well as the total wavefields
for elastic wave modeling, imaging, and inversion.

Simulating propagation of decoupled elastic waves using low-rank
approximate mixed-domain integral operators for anisotropic media

Jiubing Cheng', Tariq Alkhalifah?, Zedong Wu?, Peng Zou®, and Chenlong Wang®

mode decoupling can not only help elastic imaging to produce
physically interpretable images, which charactenze reflect 5
of varous reflection types (Wapenaar et al, 1987; Dellinger and
Etgen, 1990; Yan and Sava, 2008). but 1t can also provide more
opportunity to mitigate the parameter trade-offs in elastic waveform
mversion (Wang and Cheng, 2015).

For isotropic media, far-field P and § waves can be separated by
king the divergence and cur in the extrapolated elastic wavefields
(Aki and Richards, 1980; Sun and McMechan, 2001). Altematively,
Ma and Zhu (2003) and Zhang et al. (2007) extrapolate vector P and
S modes separately in an elastic wavefield by decomposing the
wave equation into P- and S-wave components. In the meantime,
decoupling of the wave modes yields familiar scalar wave equations
for the P and § modes (AKi and Richards, 1980). In anisotropic
media, one cannot derive explicit single-mode time-space-domain
differential wave equations so simply. Generally, P and S modes do
nol respectively polanze parallel and perpendicular to the wave vec-
tors, and thus they are called quasi-P (gP) and quasi-S (qS) waves.
They cannot be fully decoupled with divergence and curl operations
(Dellinger and Etgen, 1990).

Anisotropic wave propagation can be formally decoupled in the
wavenumber domain to yield single-mode pu.,ududuﬁ'm.nua] equa-

m‘m (g e al 2000 | alocy na“h h e lni iih‘ in
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integral operators for anisotropic media
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Abstract:

In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes. such that the imaging condition
produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly as the operators involved are
dependent on the velocity, and thus are not stationarv. We develop an efficient pseudo—spectral approach to directly
extrapolate the decoupled elastic waves using low-—rank approximate mixed-domain integral operators on the basis of the

elastic displacement wave equation. We apply k -gpace adjustment to the pseudo-spectral solution to allow for a relatively
large extrapolation time-step. The low-rank approximation i1s, thus, applied to the spectral operators that simultaneocusly
extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models show
that, our approach has the potential to efficlently and accurately simulate the propagations of the decoupled quasi-P and
quasi-5 modes as well as the total wavefields, for elastic wave modeling, imaging and inversion.

o Introduction

s Propasating coupled elastic wavefields
o Pseudo—spectral solution of the elastic wave equation
o Adjustment to the pseudo—spectral solution

e Propagating decoupled elastic wavefields
o Vector decomposition of the elastic wave modes
o Extrapolating the decoupled elastic waves
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o Introduction

* Propagating coupled elastic wavefields
o Pzeudo-spectral solution of the elastic wave equation
o Adjustment to the pseudo-spectral solution

* Propaszating decoupled elastic wavefields
o Yector decomposition of the elastic wave modes
o Extrapolating the decoupled elastic waves

o Fact algorithm using low-—rank decomposition
* examples

o D two-layer VTI/TT] model
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@ @ Simlating propagation of decoupled elastic waves using low rank approximate mized-domain

integral operators for anisotropic media

Hext: 3D two—laver VI orthorhombic model Up: examples Previous: csxamples

2D two—layer VTI/TTI model

The first example is on a 2D two-layer model, in which the first laver is a VII medium with Upn = QSUﬂmfs ,
Ve — 120[}”!,-’:5 , EF 0.2 , and § = —0.2 , and the secand layer is a tilted TI (TTI} medium with Upg = 360'[]??1;"5 .

Veg = lSOUH!fs , E= 0.2 . 0 =01 ang 0 =30" _ 4 point source is placed at the center of this model. Firstly, we

compare the synthetic elastic wavefields by solving the elastic displacement wave equation using the 10th-order explicit
finite-difference (FD) and low-rank pseudo—spectral schemes (with or without the k —space adjustment), respectivelw.
Figure 1 shows the wavefield snapshots at the time of 0.3 = using the spatial sampling Ar = Az = 5m and time-step

At = 0.5ms . Only the lowrank pseudo-spectral solutions with the k —zpace adjustment are displaved because the three
zchemes produce very similar results. The vertical slices through the z-—components of the elastic wawvefields show little

differences among them (Figure 2). For the low-rank pseudo-spectral scheme, the ranks are all 2 for the decomposition of

the mized-domaln matrices W,;, , W.. and W,. in equation 21, and the k —space adjustment doesn’ t change the ranks. It

takes CPU time of 0.20, 0.23 and 0. 23 seconds for them to finish the wavefield extrapolation of one time-step. Additional
4,3 and 8.2 seconds have been used to finish the low—rank decomposition of the involved mized-domain matrices before
wavefield extrapolation. We observe the FD scheme unstable if the time-step iz increased to 1.0 ms and the low-rank
pseudo—spectral scheme unstable if the time—step is increased to 2.0 ms (with unchanged spatial sampling). However, the
laow-rark pseudo-spectral solution using the k —zpace adjustment produces acceptable results even the time—step is
increased to 3.0 ms and the magimum time exceeds 3 s. Flgure 3 and Figure 4 compare the wavefield snapshots and the
vertical slices at the time of 0.6 s using the three schemes with the increased spatial sampling (namelvy Ax = Az =10
m). The FD scheme tends to exhibit dispersion artifacts with the chosen model size and extrapolation step, while low-rank
pseudo—spectral scheme exhibit acceptable accuracy. The k —space adjustment permits larzer time—steps without reducing
accuracy or introducing instability. For this example, it has produced the best results with less numerical dispersion.
Thanks to the larszer spatial and temporal sampling, the same CFU time is used for each scheme as in Figure 1. In addition,

only the ranks for the low-rank decomposition of the matriz W reduce to | when we change the tilt angle of the second

laver to 0 .
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Figure 1. Horizontal and vertical components of the elastic wavefields at the time of 0.3 s svnthesized by solving the
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Figure 1. Horizontal and vertical components of the elastic wavefields at the time of 0.3 s synthesized by solving the
Ind-order elastic wave equation with Az = Az =05 mand At = 0.5 ms.
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Figure 2. Vertical slices through the vertical components of the synthetic elastic wavefields at T — 0.75 km: (a)
10th—order FD, (b) lowrank pseudo—spectral and (c) lowrank pseudo—spectral using the k —space adjustment.
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Figure 3. Vertical components of the elastic wavefields at the time of 0.6 s synthesized using three schemes with the







