next up previous [pdf]

Next: About this document ... Up: A fast butterfly algorithm Previous: Acknowledgments

Bibliography

Beylkin, G., 1984, The inversion problem and applications of the generalized Radon transform: Communications on Pure and Applied Mathematics, 37, 579-599.

----, 1985, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform: Journal of Mathematical Physics, 26, 99-108.

Candès, E., L. Demanet, and L. Ying, 2009, A fast butterfly algorithm for the computation of Fourier integral operators: Multiscale Modeling and Simulation, 7, 1727-1750.

Demanet, L., M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, 2012, A butterfly algorithm for synthetic aperture radar imaging: SIAM Journal on Imaging Sciences, 5, 203-243.

Foster, D. J., and C. C. Mosher, 1992, Suppression of multiple reflections using the Radon transform: GEOPHYSICS, 57, 386-395.

Gardner, G. H. F., and L. Lu, eds., 1991, Slant-stack processing: Society of Exploration Geophysicists.
Issue 14 of Geophysics reprint series.

Hampson, D., 1986, Inverse velocity stacking for multiple elimination: 56th Annual International Meeting, SEG, Expanded Abstracts, 422-424.

Hargreaves, N., B. verWest, R. Wombell, and D. Trad, 2003, Multiple attenuation using an apex-shifted Radon transform: 65th Conference and Exhibition, EAGE, Extended Abstracts.

Herrmann, P., T. Mojesky, M. Magesan, and P. Hugonnet, 2000, De-aliased, high-resolution Radon transforms: 70th Annual International Meeting, SEG, Expanded Abstracts.

Liu, Y., and M. Sacchi, 2002, De-multiple via a fast least squares hyperbolic Radon transform: 72nd Annual International Meeting, SEG, Expanded Abstracts.

Michielssen, E., and A. Boag, 1996, A multilevel matrix decomposition algorithm for analyzing scattering from large structures: IEEE Transactions on Antennas and Propagation, 44, 1086-1093.

Moore, I., and C. Kostov, 2002, Stable, efficient, high-resolution Radon transforms: 64th Conference and Exhibition, EAGE, Extended Abstracts.

O'Neil, M., F. Woolfe, and V. Rokhlin, 2010, An algorithm for the rapid evaluation of special function transforms: Applied and Computational Harmonic Analysis, 28, 203-226.

Radon, J., 1917, Über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltigkeiten: Berichte über die Verhandlungen der Sächsische Akademie der Wissenschaften (Reports on the proceedings of the Saxony Academy of Science), 69, 262-277.

Sacchi, M., 1996, A bidiagonalization procedure for the inversion of time-variant velocity stack operator: CDSST report, 73-92.

Thorson, J. R., and J. F. Claerbout, 1985, Velocity-stack and slant-stack stochastic inversion: GEOPHYSICS, 50, 2727-2741.

Trad, D., 2003, Interpolation and multiple attenuation with migration operators: GEOPHYSICS, 68, 2043-2054.

Trad, D., T. Ulrych, and M. Sacchi, 2002, Accurate interpolation with high resolution time-variant Radon transforms: GEOPHYSICS, 67, 644-656.

Wang, J., and M. Ng, 2009, Greedy least-squares and its application in Radon transforms: 2009 CSPG CSEG CWLS Convention.

Yilmaz, O., 1989, Velocity-stack processing: Geophysical Prospecting, 37, 357-382.

Ying, L., 2009, Sparse Fourier transform via butterfly algorithm: SIAM Journal on Scientific Computing, 31, 1678-1694.




2013-07-26